1. Algorithms for digital image processing in diabetic retinopathy / R. J. Winder [et al.] // Computerized Medical Imaging and Graphics. - 2009. - Vol. 33(8). - P. 608-622.
2. Felkel, P. Vessel tracking in peripheral CTA datasets - an overview / P. Felkel, R. Wegenkittl, A. Kanitsar // Computer Graphics (Spring Conference on). - Budmerice, Slovakia, 2001. - P. 232-239.
3. Buhler, K. Geometric methods for vessel visualization and quantification - a Survay / K. Buhler, P. Felkel, A. L. Cruz // Geometric Modelling for Scientific Visualization. - Berlin, Heidelberg: Springer, 2003. - P. 399-421.
4. Kirbas, C. A review of vessel extraction techniques and algorithms / C. Kirbas, F. Quek // ACM Computing. - 2004. - Vol. 36(2). - P. 81-121.
5. Mabrouk, M. S. Survey of retinal image segmentation and registration / M. S. Mabrouk, N. H. Solouma, Y. M. Kadah // International Journal on Graphics, Vision and Image Processing. - 2006. - Vol. 6(2). - P. 1-11.
6. Algorithms for the automated detection of diabetic retinopathy using digital fundus images : a review / O. Faust [et al.] // Journal of Medical Systems. - 2012. - Vol. 36(1). - P. 145-57.
7. Blood vessel segmentation methodologies in retinal images / M. M. Fraz [et al.] // Comput Methods Programs Biomed. - 2012. - Vol. 108(1). - P. 407-433.
8. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes / M. D. Abrаmoff [et al.] // Diabetes Care. - 2008. - Vol. 31(2). - P. 193-198.
9. Deep neural net-works segment neuronal membranes in electron microscopy images / D. C. Ciresan [et al.] // Advances in Neural Information Processing Systems 25 (NIPS 2012). - Harrahs and Harveys: Curran Associates, Inc., 2012. - P. 2852-2860.
10. Retinal vessel measurement: comparison between observer and computer driven methods / R. S. Newsom [et al.] // Graefes Arch. Clin. Exp. Ophthalmol. - 1992. - Vol. 230(3). - P. 221-225.
11. FlowNet: Learning Optical Flow with Convolutional Networks / A. Dosovitskiy [et al.] // Computer Vision (ICCV), IEEE Intern. Conf. - Chile, 2015. - P. 2758-2766.
12. Barron, J. L. Performance of optical flow techniques / J. L. Barron, D. J. Fleet, S. Beauchemin // International Journal of Computer Vision. - 1994. - Vol. 12(1). - P. 43-77.
13. Farnebäck, G. Two-Frame Motion Estimation Based on Polynomial Expansion / G. Farnebäck // Proceedings of the 13th Scandinavian Conf. on Image Analysis. - Halmstad, Sweden, 2003. - P. 363-370.
14. Detection of dynamical properties of flow in an eye vessels by video sequences analysis / A. Nedzved [et al.] // Intern. Conf. on Information and Digital Technologies. - Zilino, Slovakia, 2017. - P. 275-281.