1. Aksoy, S. Feature normalization and likelihood-based similarity measures for image retrieval / S. Aksoy, R. M. Haralick // Pattern Recognition Letters. - 2001. - Vol. 22, no. 5. - P. 563-582.
2. Singh, В. Investigating the impact of data normalization on classification performance / B. Singh // Applied Soft Computing J. - 2020. - Vol. 97. - P. 105524.
3. Nayak, S. C. Impact of data normalization on stock index forecasting / S. C. Nayak, B. B. Misra, H. S. Behera // Intern. J. of Computer Information Systems and Industrial Management Applications. - 2014. -Vol. 6. - P. 257-269.
4. Naeini, A. A. Assessment of normalization techniques on the accuracy of hyperspectral data clustering / A. A. Naeini, M. Babadi, S. Homayouni // Intern. Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. - 2017. - Vol. 42. - P. 27-30.
5. Stevens, S. S. On the theory of scales of measurement / S. S. Stevens // Science. New Series. - 1946. -Vol. 103, no. 2684. - P. 677-680.
6. Орлов, А. И. Теория измерений как часть методов анализа данных / А. И. Орлов // Социология: методология, методы, математическое моделирование. - 2012. - № 35. - C. 155-174.
7. Velleman, P. F. Nominal, ordinal, interval, and ratio typologies are misleading / P. F. Velleman, L. Wilkinson // The American Statistician. - 1993. - Vol. 47, no. 1. - P. 65-72.
8. Tukey, J. W. Exploratory Data Analysis / J. W. Tukey. - Massachusetts : Addison-Wesley, 1977. -P. 39-49.
9. Bruffaerts, C. A generalized boxplot for skewed and heavy-tailed distributions / C. Bruffaerts, V. Verardi, C. Vermandele // Statistics & Probability Letters. - 2014. - Vol. 95. - P. 110-117.
10. Kimber, A. C. Exploratory data analysis for possibly censored data from skewed distributions / A. C. Kimber // Applied Statistics. - 1990. - Vol. 39. - P. 21-30.
11. Carling, K. Resistant outlier rules and the non-Gaussian case / K. Carling // Computational Statistics & Data Analysis. - 2000. - Vol. 33, no. 3. - P. 249-258.
12. Hubert, M. An adjusted boxplot for skewed distributions / M. Hubert, E. Vandervieren // Computational Statistics & Data Analysis. - 2008. - Vol. 52, no. 12. - P. 5186-5201.
13. Brys, G. A robust measure of skewness / G. Brys, M. Hubert, A. Struyf // J. of Computational and Graphical Statistics. - 2004. - Vol. 13. - P. 996-1017.
14. Kyurkchiev, N. Sigmoid Functions: Some Approximation and Modelling Aspects / N. Kyurkchiev, S. Markov. - Saarbrucken : LAP Lambert Academic Publishing, 2015. - 120 p.
15. Флах, П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных / П. Флах. - М. : ДМК Пресс, 2015. - 402 с.
16. Bicego, M. Properties of the Box-Cox transformation for pattern classification / M. Bicego, S. Baldo // Neurocomputing. - 2016. - Vol. 218. - P. 390-400.
17. Zhang, Q. Weighted data normalization based on eigenvalues for artificial neural network classification / Q. Zhang, S. Sun // Proc. of Intern. Conf. Neural Information Processing. - 2009. - Vol. 5863. - P. 349-356. https://doi.org/10.1007/978-3-642-10677-4_39
18. Zadeh, L. A. Fuzzy sets / L. A. Zadeh // Information and Control. - 1965. - Vol. 8, no. 3. - P. 338-353.
19. Więckowski, J. How the normalization of the decision matrix influences the results in the VIKOR method? / J. Więckowski, W. Salabun // Procedia Computer Science. - 2020. - Vol. 176. - P. 2222-2231.
20. Ioffe, S. Batch normalization: accelerating deep network training by reducing internal covariate shift / S. Ioffe, C. Szegedy // 32nd Intern. Conf. on Machine Learning, Lille, France, 7-9 July 2015. - Lille, 2015. -Vol. 37. - P. 448-456.
21. Do we need hundreds of classifiers to solve real world classification problems? / M. Fernandez-Delgado [et. al.] // The J. of Machine Learning Research. - 2014. - Vol. 15, no. 1. - P. 3133-3181.
22. Lemons, K. Comparison between Naive Bayes and random forest to predict breast cancer / K. A. Lemons // Intern. J. of Undergraduate Research & Creative Activities. - 2020. - Vol. 12, art. 12. - Р. 1-5. https://doi.org/10.7710/2168-0620.0287
23. Chicco, D. The benefits of the Matthews correlation coefficient (MCC) over the diagnostic odds ratio (DOR) in binary classification assessment / D. Chicco, V. Starovoitov, G. Jurman // IEEE Access. - 2021. -Vol. 9. - P. 47112-47124. https://doi.org/10.1109/ACCESS.2021.3068614
24. Новиков, Д. А. Статистические методы в педагогических исследованиях (типовые случаи) / Д. А. Новиков. - М. : МЗ-Пресс, 2004. - 67 с.
25. Cheddad, A. On box-cox transformation for image normality and pattern classification // IEEE Access. -2020. - Vol. 8. - P. 154975-154983. https://doi.org/10.1109/ACCESS.2020.3018874
26. Han, J. The influence of the sigmoid function parameters on the speed of backpropagation learning / J. Han, C. Moraga // Intern. Workshop on Artificial Neural Networks, Malaga-Torremolinos, Spain, 7-9 June 1995. - Malaga-Torremolinos, 1995. - P. 195-201.
27. Jain, A. Score normalization in multimodal biometric systems / A. Jain, K. Nandakumar, A. Ross // Pattern Recognition. - 2005. - Vol. 38, no. 12. - P. 2270-2285.