МЕТОДЫ И АЛГОРИТМЫ РАСПОЗНАВАНИЯ НОМЕРНЫХ ЗНАКОВ АВТОМОБИЛЕЙ
Abstract
Представлены типовая архитектура системы распознавания номерных знаков, методы и алгоритмы, применяемые в существующих системах, а также система распознавания автомобильных номерных знаков Республики Беларусь. Рассмотрены применение вейвлет-моментов и моментов псевдо-Цернике для выделения признаков и классификация с использованием искусственных нейронных сетей.
About the Authors
В. КнязевBelarus
Р. Садыхов
Belarus
References
1. Setchell C.J. Applications of Computer Vision to Road-traffic monitoring. PhD thesis. University of Bristol, 1997. – 170 p.
2. Inigo R. Traffic Monitoring and Control Using Machine Vision: a survey // IEEE Transactions on Industrial Electronics, IE-32. – № 3. – 1985. – P. 177 – 185.
3. Schneiderman H., Kanade T. A statistical method for 3D-object detection applied to faces and cars // Proc. of the Computer Vision and Pattern Recognition. – USA. – P. 746 –752.
4. Belkasim S.O., Sridhar M., Ahmadi M. Pattern Recognition with Moment Invariants: a Comparative Study and new Results // Pattern Recognition. – V. 24. – № 12. – 1991. – P. 1117 – 1138.
5. Lisboa P.J.G., Perantonis S.J. Invariant character recognition: Comparison of Zernike moment and high order neural networks // Proc. of the Int. Joint Conf. on Neural Networks. – Singapore, 1991. – P. 1421 – 1425.
6. Khotanzad A., Hong Y.H. Invariant Image Recognition by Zernike Moments // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1990. – P. 489 – 497.
7. Vatkin M., Selinger M. The system of handwritten characters recognition on the basis of Legendre moments and neural network // The Int. Workshop on Discrete-Event System Design. – Poland, 2001. – P. 259 – 263.
8. Shen D., Horace H.S. Discriminative wavelet shape descriptors for recognition of 2D-patterns // Pattern Recognition. – V. 32. – № 2. – 1999. – P. 151 – 166.
9. Huang J., Wechsler H. Eye Detection Using Optimal Wavelet Packets and Radial Basis Functions // Int. Journal of Pattern Recognition and Artificial Intelligence. – V. 13. – № 7. – 1999. – P. 1009 – 1026.
10. Hjelmas F., Boon Kee Low. Face detection: a survey // Computer Vision and Image Understanding. – V. 83. – № 3. – 2001. – P. 236-274.
11. Torres-Mendez L.A., Ruiz-Suarez J.C. Scale-Invariant Object Recognition // IEEE Transactions on Systems, Man and Cybernetics, Part C: Application and Reviews. – V. 30(1). – 2000. – P. 125 – 130.
12. Phokharatkul P., Kimpan Chow. Handwritten Thai Character Recognition Using Fourier Descriptors and Genetic Neural Networks // Computational Intelligence. – V. 18. – № 3. – 2002. – P. 270 – 293.
13. Chong C.W., Mukundan R., Raveendran P. An Efficient Algorithm for Fast Computa-tion of Pseudo-Zernike Moments // International Conference on Image and Vision Computing (IVCNZ-01). – New Zealand, 2001. – P. 237 – 242.
14. Осовский C. Нейронные сети для обработки информации. М.: Финансы и статистика, 2002. – 344 c.
15. Bulas-Kruz J. Ali A.T., Dagless E.L. A Temporal Smoothing Technique for Real-Time Motion Detection // Proc. of 5th Int. Conf. on Computer Analysis of Images and Patterns (CAIP-93). – 1993. – P. 379 – 386.
Review
For citations:
, . Informatics. 2004;(2(02)):45-56. (In Russ.)