MERGING CLASSIFIER DECISIONS FOR SPEAKER RECOGNITION
Abstract
The paper proposes using fuzzy integrals for merging classifier decisions in speaker recognition
systems. Instantaneous frequency and instantaneous amplitude are considered as the set of features. The approach shows significantly better results than a single classifier. A comparison of the proposed approach with the other methods for merging classifier decisions is provided.
About the Authors
Y. N. ImamverdiyevRussian Federation
L. V. Sukhostat
Russian Federation
References
1. Ross, A.A. Handbook of Multibiometrics / A.A. Ross, K. Nandakumar, A.K. Jain. – London : Springer, 2006. – 198 p.
2. Solomonoff, A. Advances in channel compensation for SVM speaker recognition / A. Solomonoff, W. Campbell, I. Boardman // Proc. of ICASSP. – Philadelphia, PA, 2005. – P. 629– 632.
3. Gader, P.D. Fusion of handwritten word classifiers / P.D. Gader, M.A. Mohamed, J.M. Keller //Pattern Recognition Letters. – 1996. – № 17. – P. 577–584.4. Michel, G. The representation of importance and interaction of features by fuzzy measure /G. Michel // Pattern Recognition Letters. – 1996. – № 17. – P. 567–575.
4. Kuncheva, L.I. Decision templates for multiple classifier fusion: an experimental comparison / L.I. Kuncheva, J.C. Bezdek, R.P.W. Duin // Pattern Recognition. – 2001. – № 34. – P. 299–314.
5. Mirhosseini, A.R. Human face image recognition: an evidence aggregation approach / A.R. Mirhosseini, H. Yan // Computer Vision and Image Understanding. – 1998. – № 71. – P. 213– 230.
6. Pham, T.D. Color image segmentation using fuzzy integral and mountain clustering / T.D. Pham, H. Yan // Fuzzy sets and systems. – 1999. – № 107. – P. 121–130.
7. Kwak, K.-C. Face recognition using fuzzy integral and wavelet decomposition method / K.- C. Kwak, W. Pedrycz // IEEE Transactions on Systems, Man, and Cybernetics. – 2004. – № 34. – P. 1666–1675.
8. Auephanwiriyakul, S. Generalized Choquet fuzzy integral fusion / S. Auephanwiriyakul, M.K. James, P.D. Gader // Information Fusion. – 2002. – № 3. – P. 69–85.
9. Wolf, J.J. Efficient acoustic parameters for speaker recognition / J.J. Wolf // J. Acoustical Society of America. – 1982. – Vol. 51, № 6. – P. 2044–2056.
10. Kinnunen, T. An overview of text-independent speaker recognition: from features to supervectors / T. Kinnunen, H. Li // Speech Communication. – 2010. – Vol. 52, № 1. – P. 12– 40.
11. Rose, P. Forensic speaker identification. Taylor & Francis forensic science series / P. Rose. N.Y. : Taylor & Francis, 2002. – 380 p.
12. Kinnunen, T. Spectral features for automatic text-independent speaker recognition. Licentiate thesis / T. Kinnunen. – Finland : University of Joensuu, 2003.
13. Маркел, Дж. Линейное предсказание речи / Дж. Маркел, А.X. Грей. – М. : Связь, 1980. – 308 с.
14. Furui, S. Cepstral analysis techniques for automatic speaker verification / S. Furui // IEEE tran. acoust., speech, signal processing. – 1981. – Vol. 27. – P. 254–272.
15. Reynolds, D. Channel robust speaker verification via feature mapping / D. Reynolds // Proc. of ICASSP. – Hong Kong, 2003. – Vol. 2. – P. 53–56.
16. Doddington, G. Speaker recognition based on idiolectal differences between speakers / G. Doddington // Proc. of Eurospeech. – Aalborg, Denmark, 2001. – Vol. 4. – P. 2521–2524.
17. Hemant, A.P. Forensic Speaker Recognition / A.P. Hemant, Amy Neustein. – Heidelberg : Springer, 2012. – 540 p.
18. Benediktsson, J.A. Consensus theoretic classification methods / J.A. Benediktsson, P.H. Swain // IEEE Trans. Systems Man Cybernet. – 1992. – № 22. – P. 688–704.
19. Ho, T.K. Decision combination in multiple classifier systems / T.K. Ho, J.J. Hull, S.N. Srihari // IEEE Trans. Pattern Anal. Machine Intelligence. – 1994. – № 16. – P. 66–75.
20. Xu, L. Methods of combining multiple classifiers and their applications to hand-written character recognition / L. Xu, A. Krzyzak, C.Y. Suen // IEEE Trans. Systems Man Cybernet. – 1992. – № 23. – P. 418–435.
21. Soong, F.K. On the use of instantaneous and transitional spectral information in speaker recognition / F.K. Soong, A.E. Rosenberg // IEEE Trans. Acoust. Speech, Signal Process. – 1988. – ASSP-36. – P. 871–879.
22. Farrell, K.R. Text-dependent speaker verification using data fusion / K.R. Farrell // IEEE Intern. Conf. on Acoustic, Speech and Signal Processing. – Detroit, Michigan, USA, 1995. – P. 349–352.
23. Sub-word speaker verification using data fusion methods / K.R. Farrell [et al.] // IEEE Workshop on Neural Networks for Signal Processing. – Amelia Island, Florida, 1997. – P. 531–540.
24. Farrell, K.R. An analysis of data fusion methods for speaker verification / K.R. Farrell, R.P. Ramachandran, R.J. Mammone // IEEE Intern. Conf. on Acoustic, Speech and Signal Processing. – Washington, USA, 1998. – P. 1129–1132.
25. Schalkwyk, J. Speaker verification with low storage requirements / J. Schalkwyk, N. Jain, E. Barnard // IEEE Intern. Conf. on Acoustic, Speech and Signal Processing. – Georgia, USA, 996. – P. 693–696.
26. Zadeh, L.A. Fuzzy sets / L.A. Zadeh // Information and Control. – 1965. – № 8. – P. 338– 353.
27. Gupta, M.M. Fuzzy measures and fuzzy integrals / M.M. Gupta, G.N. Saridis, B.R. Gaines. – N.Y. : Elsevier, 1977. – 510 p.29. Murofushi, T. A theory of fuzzy measures. Representation, the Choquet integral and null sets / T. Murofushi, M. Sugeno // J. Math. Anal. Appl. – 1991. – Vol. 159, № 2. – P. 532–549.
28. Maragos, P. On amplitude and frequency demodulation using energy operators / P. Maragos, J.F. Kaiser, T.F. Quatieri // IEEE Trans. on Signal Processing. – 1993. – Vol. 41, № 4. – P. 1532–1550.
29. Zhang, W.D. A priori threshold determination for phrase-prompted speaker verification / W.D. Zhang [et al.] // Proc. Eurospeech’99. – Budapest, Hungary, 1999. – P. 1203–1206.
30. Hamid, L.A. Quality based Speaker Verification Systems using Fuzzy Inference Fusion Scheme / L.A. Hamid, D.A. Ramli // Proc. of the Intern. Conf. on Communications, Signal Processing and Computers. – Interlaken, Switzerland, 2014. – P. 96–103.
Review
For citations:
Imamverdiyev Y.N., Sukhostat L.V. MERGING CLASSIFIER DECISIONS FOR SPEAKER RECOGNITION. Informatics. 2015;(1):17-25. (In Russ.)