Preview

Информатика

Расширенный поиск

ПРИМЕНЕНИЕ ГЕТЕРОАССОЦИАТИВНЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ЗАПИСИ И ВОССТАНОВЛЕНИЯ ИНФОРМАЦИИ

Полный текст:

Аннотация

Рассматривается проблема ассоциативного представления данных на примере рекуррентных
искусственных нейронных сетей типа Хопфилда. Предложены: модификация сети «двунаправленная ассоциативная память», способ секционирования входных данных, основанный на их равномерном разбиении с дальнейшим последовательным отображением друг в друга, а также соответствующий метод их записи в гетероассоциативную память. Полученная нейросетевая архитектура способна сохранять, ассоциативно восстанавливать и распознавать большие объемы информации.

Об авторе

Г. А. Прокопович
Объединенный институт проблем информатики НАН Беларуси
Беларусь


Список литературы

1. Кузнецов, С.Д. Основы баз данных : учебное пособие / С.Д. Кузнецов. − 2-е изд.,

2. испр. − М. : Интернет-университет информационных технологий; БИНОМ. Лаборатория знаний, 2007. − 484 с.

3. Кохонен, Т. Ассоциативные запоминающие устройства / Т. Кохонен. – М. : Мир, 1982. – 384 с.

4. Hopfield, J. Neural networks and physical systems with emergent collective computational abilities / J. Hopfield // Proc. of National Academy of Sciences. − 1982. − Vol. 79, № 8. – P. 2554–2558.

5. Hopfield, J.J. Computing with neural circuits / J.J. Hopfield, D.W. Tank // A model. Science. − 1986. − Vol. 233. − P. 625–633.

6. The capacity of the Hopfield associative memory / R.J. McEliece [et al.] // IEEE Transactions on Information Theory. − 1987. − Vol. 33, № 4. − P. 461–482.

7. Elman, J.L. Finding structure in time / J.L. Elman // Cognitive Science. − 1990. − Vol. 14. –

8. P. 179–211.

9. Narendra, K.S. Identification and control of dynamical systems using neural networks /

10. K.S. Narendra, K. Parthasarathy // IEEE Trans. Neural Networks. − 1990. − Vol. 1. − P. 4–27.

11. Improved Elman networks and applications for controlling ultrasonic motors / X.H. Shi

12. [et al.] // Applied Artificial Intelligence: An International Journal. − 2004. − Iss. 7, vol. 18. −

13. P. 603–629.

14. Хайкин, С. Нейронные сети: полный курс / С. Хайкин. – 2-е изд., пер. с англ. – М. :

15. Вильямс, 2006. – 1104 с.

16. Фролов, А.А. Нейронные модели ассоциативной памяти / А.А. Фролов, И.П. Му-

17. равьев. − М. : Наука, 1987. − 160 с.

18. Ежов, А.А. Нейрокомпьютинг и его применения в экономике и бизнесе / А.А. Ежов,

19. С.А. Шумский.− М. : МИФИ, 1998. – 223 с.

20. Меламед, И.И. Нейронные сети и комбинаторная оптимизация / И.И. Меламед // Автоматика и телемеханика. − 1994. − № 11. − C. 3–40.

21. Уоссермен, Ф. Нейрокомпьютерная техника: теория и практика / Ф. Уоссермен. – М. : Мир, 1990. – 240 с.

22. Kosko, B. Constructing an associative memory / B. Kosko // Byte. − 1987. − Vol. 12. −

23. P. 137–144.

24. Kosko, B. Bi-directional associative memories / B. Kosko // IEEE Transactions on Systems,

25. Man and Cybernetics. − 1988. − Vol. 18, № 1. − P. 49–60.

26. Прокопович, Г.А. Адаптивный нейросетевой классификатор / Г.А. Прокопович // Информатика. − 2009. − № 23. − С. 68–81.

27. Прокопович, Г.А. Нейросетевой блок памяти для адаптивной работы сложных технических систем в динамической среде / Г.А. Прокопович // Информатика. – 2010. – № 26. – С. 54–65.

28. Palm, G. On the information storage capacity of local learning rules / G. Palm // Neural

29. Comp. – 1992. – Vol. 4. − P. 703–711.

30. Sommer, F.T. Improved bidirectional retrieval of sparse patterns stored by Hebbian learning / F.T. Sommer, G. Palm // Neural Networks. – 1999. – Vol. 12 (2). − P. 281–297.


Для цитирования:


Прокопович Г.А. ПРИМЕНЕНИЕ ГЕТЕРОАССОЦИАТИВНЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ЗАПИСИ И ВОССТАНОВЛЕНИЯ ИНФОРМАЦИИ. Информатика. 2012;(2(34)):38-49.

Просмотров: 140


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)