МЕТОД ПОИСКА СВЯЗЕЙ МЕЖДУ МОРФОЛОГИЧЕСКИМИ СТРУКТУРАМИ ГИСТОЛОГИЧЕСКИХ ИЗОБРАЖЕНИЙ И ПОКАЗАТЕЛЯМИ СОСТОЯНИЯ ОНКОЛОГИЧЕСКИХ БОЛЬНЫХ
Abstract
Предлагается метод поиска и визуализации структур, связанных с показателями состояния онкологических больных. В основе метода лежит многоступенчатая процедура, включающая
подсчет признаков изображения, извлечение главных компонент, корреляцию главных компонент с известными свойствами объекта и проекцию найденных зависимостей на исходные гистологические снимки с целью выделения информативных структурных образований. Находятся зависимости между клиническими показателями и морфологическими структурами на соответствующих
изображениях.
About the Authors
В. КовалевBelarus
А. Дмитрук
Belarus
И. Сафонов
Belarus
References
1. Schwab, M. Encyclopedia of Cancer / M. Schwab. – N.Y. : Academic Press, 2009. – 3235 p.
2. Hayat, M. Methods of Cancer Diagnosis, Therapy and Prognosis. In 6 vol. / M. Hayat. –
3. Springer, 2009–2010.
4. Wootton, R. Image Analysis in Histology: Conventional and Confocal Microscopy /
5. R. Wootton, D. Springall, J. Polak. – Cambridge : Cambridge University Press, 1995. – 425 p.
6. Histopathological image analysis : A review / M.N. Gurcan [el al.] // IEEE Reviews in Biomedical Engineering. – 2009. – Vol. 2. – P.147–171.
7. Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading / O. Sertel [et al.] // Journal of Signal Processing Systems. – 2009. – Vol. 55, № 1. – P.169–183.
8. Stack, M.S. Ovarian Cancer (Cancer Treatment and Research) / M.S. Stack, D.A. Fishman. –
9. N.Y. : Springer, 2009. – 409 p.
10. Bamberger, E. Angiogenesis in epithelian ovarian cancer (review) / E. Bamberger, C. Perrett // Molecular Pathology. – 2002. – № 55. – P. 348–359.
11. Computer-aided image processing of angiogenic histological samples in ovarian cancer /
12. M. Sprindzuk [et al.] // Journal of Clinical Medicine Research. – 2009. – Vol. 1, № 5. – P. 249–261.
13. Folkman, J. What is the evidence that tumors are angiogenesis dependent? / J. Folkman // Journal of the National Cancer Institute. – 1990. – Vol. 82, № 1. – P. 4–6.
14. Hsu, W. Image mining: Trends and developments / W. Hsu, M. Lee, J. Zhang // Journal of
15. Intelligent Information Systems. – 2002. – Vol. 19, № 1. – P. 7–23.
16. Herold, J. Multivariate image mining / J. Herold, C. Loyek, T.W. Nattkemper // Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. – 2011. – Vol. 1, № 1. – P. 2–13.
17. Perner, P. Image mining: Issues, framework, a generic tool and its application to medical
18. image diagnosis / P. Perner // Engineering Applications of Artificial Intelligence. – 2002. – Vol. 15, № 2. – P. 205–216.
19. Kovalev, V. Mining lung shape from x-ray images / V. Kovalev, A. Prus, P. Vankevich //
20. Machine Learning and Data Mining in Pattern Recognition (MLDM-2009). – Germany, 2009. –
21. Vol. 5632. – P. 554–568.
22. Kovalev, V. Histological image mining for exploring textural differences in cancerous tissue / V. Kovalev, I. Safonau, A. Prus // Swedish Symposium on Image Analysis (SSBA-2010). – Sweden, 2010. – P. 113–116.
23. Image indexing using color correlograms / J. Huang [et al.] // IEEE Comp. Soc. Conf. on
24. Computer Vision and Pattern Recognition. – USA, 1997. – P. 762–768.
25. Kovalev, V. Color co-occurrence descriptors for querying-by-example / V. Kovalev,
26. S. Volmer // Int. Conf. on Multimedia Modelling. – Switzerland, 1998. – P. 32–38.
27. Julesz, B. Foundations of Cyclopean Perception / B. Julesz. – Cambridge, Massachusetts :
28. The MIT Press, 2006. – 426 p.
29. Cortical regions involved in visual texture perception: a fMRI study / L.L. Beason-Held
30. [et al.] // Cognitive Brain Research. – 1998. – № 7. – P. 111–118.
31. Petrou, M. Three-dimensional nonlinear invisible boundary detection / M. Petrou, V. Kovalev, J. Reichenbach // IEEE Trans. Image Processing. – 2006. – Vol. 15, № 10. – P. 3020–3032.
32. Kovalev, V. Detection of structural differences between the brains of schizophrenic patients and controls / V. Kovalev, M. Petrou, J. Suckling // Psychiatry Research: Neuroimaging. – 2003. – № 124. – P. 177–189.
33. Heckbert, P. Color image quantization for frame buffer display / P. Heckbert // Proc. of the 9th annual conf. on computer graphics and interactive techniques (SIGGRAPH '82). – USA, 1982. – P. 297–307.
Review
For citations:
, , . Informatics. 2012;(2(34)):5-11. (In Russ.)