1. Schwab, M. Encyclopedia of Cancer / M. Schwab. - N.Y. : Academic Press, 2009. - 3235 p.
2. Hayat, M. Methods of Cancer Diagnosis, Therapy and Prognosis. In 6 vol. / M. Hayat. -
3. Springer, 2009-2010.
4. Wootton, R. Image Analysis in Histology: Conventional and Confocal Microscopy /
5. R. Wootton, D. Springall, J. Polak. - Cambridge : Cambridge University Press, 1995. - 425 p.
6. Histopathological image analysis : A review / M.N. Gurcan [el al.] // IEEE Reviews in Biomedical Engineering. - 2009. - Vol. 2. - P.147-171.
7. Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading / O. Sertel [et al.] // Journal of Signal Processing Systems. - 2009. - Vol. 55, № 1. - P.169-183.
8. Stack, M.S. Ovarian Cancer (Cancer Treatment and Research) / M.S. Stack, D.A. Fishman. -
9. N.Y. : Springer, 2009. - 409 p.
10. Bamberger, E. Angiogenesis in epithelian ovarian cancer (review) / E. Bamberger, C. Perrett // Molecular Pathology. - 2002. - № 55. - P. 348-359.
11. Computer-aided image processing of angiogenic histological samples in ovarian cancer /
12. M. Sprindzuk [et al.] // Journal of Clinical Medicine Research. - 2009. - Vol. 1, № 5. - P. 249-261.
13. Folkman, J. What is the evidence that tumors are angiogenesis dependent? / J. Folkman // Journal of the National Cancer Institute. - 1990. - Vol. 82, № 1. - P. 4-6.
14. Hsu, W. Image mining: Trends and developments / W. Hsu, M. Lee, J. Zhang // Journal of
15. Intelligent Information Systems. - 2002. - Vol. 19, № 1. - P. 7-23.
16. Herold, J. Multivariate image mining / J. Herold, C. Loyek, T.W. Nattkemper // Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. - 2011. - Vol. 1, № 1. - P. 2-13.
17. Perner, P. Image mining: Issues, framework, a generic tool and its application to medical
18. image diagnosis / P. Perner // Engineering Applications of Artificial Intelligence. - 2002. - Vol. 15, № 2. - P. 205-216.
19. Kovalev, V. Mining lung shape from x-ray images / V. Kovalev, A. Prus, P. Vankevich //
20. Machine Learning and Data Mining in Pattern Recognition (MLDM-2009). - Germany, 2009. -
21. Vol. 5632. - P. 554-568.
22. Kovalev, V. Histological image mining for exploring textural differences in cancerous tissue / V. Kovalev, I. Safonau, A. Prus // Swedish Symposium on Image Analysis (SSBA-2010). - Sweden, 2010. - P. 113-116.
23. Image indexing using color correlograms / J. Huang [et al.] // IEEE Comp. Soc. Conf. on
24. Computer Vision and Pattern Recognition. - USA, 1997. - P. 762-768.
25. Kovalev, V. Color co-occurrence descriptors for querying-by-example / V. Kovalev,
26. S. Volmer // Int. Conf. on Multimedia Modelling. - Switzerland, 1998. - P. 32-38.
27. Julesz, B. Foundations of Cyclopean Perception / B. Julesz. - Cambridge, Massachusetts :
28. The MIT Press, 2006. - 426 p.
29. Cortical regions involved in visual texture perception: a fMRI study / L.L. Beason-Held
30. [et al.] // Cognitive Brain Research. - 1998. - № 7. - P. 111-118.
31. Petrou, M. Three-dimensional nonlinear invisible boundary detection / M. Petrou, V. Kovalev, J. Reichenbach // IEEE Trans. Image Processing. - 2006. - Vol. 15, № 10. - P. 3020-3032.
32. Kovalev, V. Detection of structural differences between the brains of schizophrenic patients and controls / V. Kovalev, M. Petrou, J. Suckling // Psychiatry Research: Neuroimaging. - 2003. - № 124. - P. 177-189.
33. Heckbert, P. Color image quantization for frame buffer display / P. Heckbert // Proc. of the 9th annual conf. on computer graphics and interactive techniques (SIGGRAPH '82). - USA, 1982. - P. 297-307.