1. Rao, K. Techniques and Standards for Image, Video, and Audio Coding / K. Rao, J. Hwang. - Prentice Hall, 1996. - 563 p.
2. Vaidyanathan, P. P. Multirate Systems and Filter Banks / P. P. Vaidyanathan. - Englewood Cliffs, NJ : Prentice Hall, 1993. - 911 p.
3. Крот, А. М. Теория анализа и синтеза бэнк-фильтров и их применение / А. М. Крот, В. О. Кудрявцев // Успехи современной радиоэлектроники. - 1999. - № 2. - С. 3-17.
4. Suzuki, T. Lifting-based paraunitary filterbanks for lossy/lossless image coding / T. Suzuki, Y. Tanaka, M. Ikehara // Proc. of Intern. Conf. EUSIPCO. - Florence, 2006. - Vol. 6.
5. Pennebaker, W. B. JPEG: Still Image Compression Standard / W. B. Pennebaker, J. L. Mitchell. - N. Y. : Van Nostrand Reinhold, 1993. - 639 p.
6. Taubman, D. JPEG2000: Image Compression Fundamentals, Standards, and Practice / D. Taubman, M. Marcellin. - Boston : Kluwer Academic Publishers, 2002. - 777 p.
7. ISO/IEC 29199-2:2012. Information technology - JPEG XR image coding system. - Part 2: Image coding specification. - 2012.
8. Chen, Y. J. Integer discrete cosine transform (IntDCT) / Y. J. Chen, S. Oraintara, T. Nguyen // Proc. of 2nd Intern. Conf. ICICS. - Sydney, 1999. - Vol. 99.
9. Liang, J. Fast multiplierless approximations of the DCT with the lifting scheme / J. Liang, T.D. Tran // IEEE Trans. Signal Process. - 2001. - Vol. 49, no. 12. - P. 3032-3044.
10. Petrovsky, A. Dynamic reconfigurable on the lifting steps wavelet packet processor with frame-based psychoacoustic optimized time-frequency tiling for real-time audio applications / A. Petrovsky, M. Rodionov, Al. Petrovsky // Design and Architectures for Digital Signal Processing. - Vienna : InTech, 2013. - P. 3-30.
11. Lattice structure for regular paraunitary linear-phase filterbanks and m-band orthogonal symmetric wavelets / S. Oraintara [et. al.] // IEEE Trans. Signal Process. - 2001. - Vol. 49, no. 11. - P. 2659-2672.
12. Gan, L. A simplified lattice factorization for linear-phase paraunitary filter banks with pairwise mirror image frequency responses / L. Gan, K.-K. Ma // IEEE Trans. Circuits Syst. II. - 2004. - Vol. 51, no. 1. - P. 3-7.
13. Choukroun, D. Novel quaternion Kalman filter / D. Choukroun, I. Bar-Itzhack, Y. Oshman // IEEE Trans. Aerosp. Electron. Syst. - 2006. - Vol. 42, no. 1. - P. 174-190.
14. Miron, S. Quaternion-MUSIC for vector-sensor array processing / S. Miron, N. Le Bihan, J. Mars // IEEE Trans. Signal Process. - 2006. - Vol. 54, no. 4. - P. 1218-1229.
15. Parfieniuk, M. Quaternionic building block for paraunitary filter banks / M. Parfieniuk, A. Petrovsky // Proc. of the 12th European Signal Processing Conf. (EUSIPCO). - Austria, Vienna, 2004. - P. 1237-1240.
16. Парфенюк, М. Параунитарные банки фильтров на основе алгебры кватернионов: теория и применение / М. Парфенюк, А. А. Петровский // Цифровая обработка сигналов. - 2008. - № 1. - С. 22-36.
17. Karney, C. Quaternions in molecular modeling / C. Karney // J. Molecular Graphics and Modelling. - 2007. - Vol. 25, no. 5. - P. 595-604.
18. Кантор, И. Л. Гиперкомплексные числа / И. Л. Кантор, А. С. Солодовников. - М. : Наука, 1973. -145 с.
19. Baker, H. G. Quaternions and orthogonal 4×4 real matrices / H. G. Baker [Electronic resource]. - 1996. - Mode of access: http://archive.gamedev.net/archive/reference/articles/article428.html. - Datе of access: 05.04.2018.
20. Parfieniuk, M. Inherently lossless structures for eight- and sixchannel linear-phase paraunitary filter banks based on quaternion multipliers / M. Parfieniuk, A. Petrovsky // Signal Process. - 2010. - Vol. 90. - P. 1755-1767.
21. Gan, L. A simplified lattice factorization for linear-phase perfect reconstruction filter bank / L. Gan, K.-K. Ma // IEEE Signal Process. Lett. - 2001. - Vol. 8, no. 7. - P. 207-209.
22. Petrovsky, N. Low read-only memory distributed arithmetic implementation of quaternion multiplier using split matrix approach / N. Petrovsky, A. Stankevich, A. Petrovsky // Electronics Letters. - 2014. - Vol. 50, no. 24. - P. 1809-1811.
23. Петровский, Н. А. CORDIC-техника для фиксированного угла вращения в операции умножения кватернионов / Н. А. Петровский, А. В. Станкевич, А. А. Петровский // Информатика. - 2015. - № 4(48). - С. 85-108.
24. Бибило П. Н. Основы языка VHDL : учеб. пособие. Изд. 6-е. - М. : Книжный дом «Либроком», 2014. - 328 с.
25. A systematic approach for synthesizing VLSI architectures of lifting-based filter banks and transforms / R. Bartholoma [et al.] // IEEE Trans. Circuits Syst. I. - 2008. - Vol. 55, no. 7. - P. 1939-1952.
26. The complexity of the quaternion product : Rep. TR 75-245 / Cornell University. - 1975. - Mode of access: http://www.theworld.com/~sweetser/quaternions/ps/cornellcstr75-245.pdf. - Datе of access: 05.04.2018.
27. Parfieniuk, M. Quaternion multiplier inspired by the lifting implementation of plane rotations / M. Parfieniuk, A. Petrovsky // IEEE Trans. Circuits Syst. I. - 2010. - Vol. 57, no. 10. - P. 2708-2717.
28. Petrovsky, N. A. Design and implementation of reversible integer quaternionic paraunitary filter banks on adderbased distributed arithmetic / N. A. Petrovsky, E. V. Rybenkov, A. A. Petrovsky // Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA 2017). - Poznan, 2017. - P. 17-22.
29. Chang, T. S. New distributed arithmetic algorithm and its application to IDCT / T. S. Chang, C. Chen, C. W. Jen // IEE Proceedings - Circuits, Devices and Systems. - 1999. - Vol. 146, no. 4. - P. 159-163.