SIMULATION OF THE ELECTROSTATIC DIPOLE FIELD IN THE PRESENCE OF A THIN UNCLOSED OBLATE ELLIPSOIDAL SHELL AND PLANE
Abstract
References
1. Маергойз, И.Д. Расчет электростатических полей методом интегральных уравнений второго рода / И.Д. Маергойз // Электричество. – 1975. – № 12. – С. 11–15.
2. Демирчан, К.С. Машинные расчеты электромагнитных полей / К.С. Демирчан, В.Л. Чечурин. – М. : Высш. шк., 1986. – 240 с.
3. Дмитриев, В.И. Метод интегральных уравнений в вычислительной электродинамике /В.И. Дмитриев, Е.В. Захаров. – М. : МАКС Пресс, 2008. – 316 с.
4. Ильин, В.П. Методы конечных разностей и конечных объемов для эллиптических уравнений / В.П. Ильин. – Новосибирск : Изд-во Ин-та математики, 2000. – 345 с.
5. Исаев, Ю.Н. Методы расчета электромагнитных полей. Практика использования MathCAD, COMSOL Multiphysics / Ю.Н. Исаев, О.В. Васильева. – Saarbrucken : LAP LAMBERT Academic Publishing, 2012. – 162 с.
6. Лебедев, Н.Н. Применение парных интегральных уравнений к электростатическим задачам для полого проводящего цилиндра конечной длины / Н.Н. Лебедев, И.П. Скальская //ЖТФ. – 1973. – Т. 43, № 1. – С. 44–51.
7. Лебедев, Н.Н. Распределение электричества на конечном конусе / Н.Н. Лебедев, И.П. Скальская // Ж. выч. мат. и мат. физики. – 1969. – Т. 9, № 6. – С. 1336–1346.
8. Лебедев, Н.Н. Распределение электричества на тонком гиперболическом сегменте / Н.Н. Лебедев, И.П. Скальская // Ж. выч. мат. и мат. физики. – 1967. – Т. 7, № 2. – С. 349–356.
9. Лебедев, Н.Н. Распределение электричества на тонком параболоидальном сегменте /Н.Н. Лебедев // ДАН СССР. – 1957. – Т. 114, № 3. – С. 513–516.
10. Лебедев, Н.Н. Распределение электричества на тонком сферическом кольце /Н.Н. Лебедев, И.П. Скальская // ЖТФ. – 1982. – Т. 52, № 12. – С. 2325–2331.
11. Кадников, С.Н. Методы расчета электростатического поля тонких оболочек и их применение в технике высоких напряжений : автореф. дис. ... д-ра техн. наук : 05.09.05 /С.Н. Кадников ; НПИ. – Новочеркасск, 1990. – 42 с.
12. Виноградов, С.С. К решению краевых задач теории потенциала для незамкнутых эллипсоидов вращения / С.С. Виноградов, Ю.А. Тучкин, В.П. Шестапалов // Доклады АН УССР. Серия А. – 1981. – № 12. – С. 47–51.
13. Занадворов, Н.П. Электростатическая задача для полого усеченного конуса /Н.П. Занадворов // ЖТФ. – 1987. – Т. 57, № 4. – C. 634–638.
14. Виноградов, С.С. Расчет электростатических полей проводников в форме сфероидальных оболочек с двумя круглыми отверстиями / С.С. Виноградов, Е.Д. Луценко //Электричество. – 1988. – № 2. – С. 52–55.
15. Кленов, Г.Э. О потенциале электростатического поля кольцевого электрода /Г.Э. Кленов // Электричество. – 1973. – № 9. – С. 85–87.
16. Шушкевич, Г.Ч. Методика решения электростатической задачи для тонкой незамкнутой сферической оболочки // Электричество. – 2010. – № 6. – С. 63–68.
17. Collins,W.D. On some triple series equations and their application / W.D. Collins // Arch. Rat. Mech. Anal. – 1962. – Vol. 11, no. 2. – P. 122–137.
18. Ерофеенко, В.Т. Теоремы сложения / В.Т. Ерофеенко. – Минск : Наука и техника, 1989. – 240 с.
19. Ерофеенко, В.Т. Задача электростатики для двух тороидальных проводников / В.Т. Ерофеенко // ЖТФ. – 1986. – Т. 56, № 8. – C. 1641–1643.
20. Ерофеенко, В.Т. Метод теорем сложения и теория усредненных граничных условий в краевых задачах электродинамики : автореф. дис. ... д-ра физ.-мат. наук : 01.04.03 /В.Т. Ерофеенко ; Белорус. гос. ун-т. – Минск, 1993. – 29 с.
21. Chang, I.C. Potential of a charged axially symmetric conductor inside a cylindrical tube / I.C. Chang, I.D. Chang // J. Appl. Phys. – 1970. – Vol. 41, no. 5. – P. 1967–1970.
22. Smythe, W.R. Charged spheroid in cylinder / W.R. Smythe // J. Math. Phys. – 1963. – Vol. 4, no. 6. – P. 833–837.
23. Руховец, А.Н. Решение некоторых классов смешанных краевых задач методом парных уравнений : автореф. дис. ... канд. физ.-мат. наук : 10.00.05 / А.Н. Руховец ; ЛПИ. –Л., 1971. – 11 с.
24. Шушкевич, Г.Ч. Расчет емкости двух тонких сферических оболочек / Г.Ч. Шушкевич //Электричество. – 1984. – № 10. – С. 62–64.
25. Шушкевич, Г.Ч. Электростатическое поле тонкой незамкнутой сферической оболочки и двух дисков / Г.Ч. Шушкевич // Электричество. – 1999. – № 6. – С. 28–34.
26. Шушкевич, Г.Ч. Электростатическое поле тонкого сферического сегмента и диска /Г.Ч. Шушкевич // ЖТФ. – 1984. – Т. 54, № 9. – С. 1801–1803.
27. Шушкевич, Г.Ч. Электростатическое поле тонкой незамкнутой сферической и сфероидальной оболочек / Г.Ч. Шушкевич // Электричество. – 1997. – № 3. – С. 59–64.
28. Шушкевич, Г.Ч. Моделирование полей в многосвязных областях в задачах электростатики / Г.Ч. Шушкевич. – Saarbruchen : LAP LAMBERT Academic Publishing, 2015. –228 c.
29. Sampath, C. Some electrostatic problems of two equal coaxial circular strips / C. Sampath,D. Jain // J. Math. and Phys. Sci. – 1991. – Vol. 25, no. 3. – P. 217–230.
30. Ерофеенко, В.Т. Моделирование поля канала импульсного электрического разряда в присутствии сферического экрана и тонкого проводящего стержня / В.Т. Ерофеенко,Д.В. Комнатный, Е.В. Лозовская // Вестник ГГТУ им. П.О. Сухого. – 2012. – № 3. – C. 85–92.
31. Ерофеенко, В.Т. Расчет электростатических полей в корпусе с отверстием методом граничных элементов / В.Т. Ерофеенко, Д.В. Комнатный // Информатика. – 2011. – № 2(30). –C. 48–55.
32. Аполлонский, С.М. Электромагнитные поля в экранирующих оболочках //С.М. Аполлонский, В.Т. Ерофеенко. – Минск : Университетское, 1988. – 246 с.
33. Справочник по специальным функциям с формулами, графиками и таблицами / под ред. М. Абрамовица, И. Стиган. – М. : Наука, 1979. – 830 с.
34. Иванов, Е.А. Дифракция электромагнитных волн на двух телах / Е.А. Иванов. – Минск : Наука и техника, 1968. – 584 с.
35. Шушкевич, Г.Ч. Компьютерные технологии в математике. Система Mathcad 14. Ч. 2 / Г.Ч. Шушкевич, С.В. Шушкевич. – Минск : Изд-во Гревцова, 2012. – 256 с.
36. Агеев, М.И. Библиотека алгоритмов 051б–100б (справ. пособие). Вып. 2 / М.И. Агеев, В.П. Алик, Ю.И. Марков. – М. : Сов. радио, 1976. – 136 с.
37. Петров, Ю.П. Обеспечение достоверности и надежности компьютерных расчетов /Ю.П. Петров. – СПб. : БХВ-Петербург, 2012. – 160 с.
Review
For citations:
Shushkevich G.Ch. SIMULATION OF THE ELECTROSTATIC DIPOLE FIELD IN THE PRESENCE OF A THIN UNCLOSED OBLATE ELLIPSOIDAL SHELL AND PLANE. Informatics. 2017;(2(54)):14-23. (In Russ.)