INTERACTIVE ALGORITHM FOR SELECTION OF LINEAR OBJECTS ON AERIAL PHOTOGRAPHS AND SATELLITE IMAGES
Abstract
About the Authors
Э. Н. SeredinBelarus
B. A. Zalesky
Belarus
References
1. LandsatLook Viewer [Электронный ресурс]. – Mode of access : http://landsatlook.usgs.gov. – Date of access : 28.09.2014.
2. Кочуб, Е.В. Анализ методов обработки материалов дистанционного зондирования Земли / Е.В. Кочуб, А.А. Топаз // Вестник ПГУ. Сер. F. – 2012. – № 16. – С. 132–140.
3. Supreet, S. Automatic Road Detection of Satellite Images – A Survey / S. Supreet, B. Seema // Intern. J. of Computer Applications & Information Technology. – 2013. – Vol. 3(2). – P. 32–34.
4. Kalaivanan, R. Survey on Road Extraction From High Resolution Satellite Images / R. Ka-laivanan, S. Mishmala // Intern. J. of Advanced Research in Computer and Communication Engineer-ing. – 2013. – Vol. 2(10). – P. 4156– 4159.
5. A Family of Quadratic Snakes for Road Extraction / M.N. Dailey [et al.] // Lecture Notes in Computer Science. – 2007. – Vol. 4843. – P. 85–94.
6. Dal Poz, A.P. Dynamic Programming Approach For Semi-Automated Road Extraction From Medium- And High-Resolution Images / A.P. Dal Poz, G.M. do Vale // ISPRS Archives. – Vol. 34 (3/W8). – P. 87–91.
7. Urban digital map updating from satellite high resolution images using GIS data as a priori knowledge / T. Bailloeul [et al.] // Remote Sensing and Data Fusion over Urban Areas, 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas. – Urban, 2003. – P. 283–287.
8. Niu, X. A semi-automatic framework for highway extraction and vehicle detection based on a geometric deformable model / X. Niu // Photogrammetric Engineering and Remote Sensing. – 2006. – Vol. 61. – P. 170–186.
9. Automatic Road Extraction from Satellite Imagery Using LEGION Networks / J. Yuan [et al.] // Proc. of Intern. Joint Conference on Neural Networks. – Atlanta, Georgia, USA, 2009. – P. 3471–3476.
10. Lacoste, C. Unsupervised line network extraction in remote sensing using a polyline process / C. Lacoste, X. Descombes, J. Zerubia // Pattern Recognition. – 2010. – Vol. 43 (4). – P. 1631–1641.
11. Color image segmentation: advances and prospects / H. Cheng [et al.] // Pattern Recogni-tion. – 2001. – № 34. – P. 2259–2281.
12. Sniedovich, M. Dynamic programming. Foundations and principles / M. Sniedovich. – Bo-ca Raton : CRC Press Taylor & Francis Group, 2011.
13. Handbook of Learning and Approximate Dynamic Programming / J. Si [et al.] // Wiley-IEEE Press, 2004.
14. Боресков, А.В. Основы работы с технологией CUDA / А.В. Боресков, А.А. Харламов. – М. : ДМК Пресс, 2010. – 232 с.
15. Сандерс, Дж. Технология CUDA в примерах: введение в программирование графиче-ских процессоров / Дж. Сандерс, Э. Кэндрот. – М. : ДМК Пресс, 2011. – 232 с.
16. Zalesky, B.A. Interactive extraction of roads and rivers in low resolution or noisy satellite images / B.A. Zalesky, E.N. Seredin // Proc. of 12th Intern. Conf. PRIP2014. – Minsk, 2014. – P. 329–334.
Review
For citations:
Seredin Э.Н., Zalesky B.A. INTERACTIVE ALGORITHM FOR SELECTION OF LINEAR OBJECTS ON AERIAL PHOTOGRAPHS AND SATELLITE IMAGES. Informatics. 2014;(4):66-74. (In Russ.)