METHOD FUZZY CLUSTERING k-MEANS WITH SMOOTHING PENALTY FUNCTION
Abstract
References
1. Steinhaus, H. Sur la division des corps materiels en parties / H. Steinhaus // Bull. Acad. Po-lon. – 1956. – Vol. 4 (12). – P. 801–804.
2. Lloyd, S. Least squares quantization in PCM / S. Lloyd // IEEE Transactions on Information Theory. – 1982. – Vol. 28, no. 2. – P. 129–137.
3. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algoritms / J.C. Bezdek. – MA, USA : Kluwer Academic Publishers Norwell, 1981. – 256 p.
4. Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. – М. : Техносфе-ра, 2005. – 1075 с.
5. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition / F. Höppner [et al.]. – N. Y. : John Wiley & Sons, 1999. – 300 p.
6. MacQueen, J.B. Methods for classification and Analysis of Multivariate Observations / J.B. MacQueen // Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability. – Berke-ley, 1967. – P. 281–297.
7. Genitha, C.H. Classification of satellite images using new fuzzy cluster centroid for unsuper-vised classification algorithm // C.H. Genitha, K. Vani // Proc. IEEE Conf. on Information and Com-munication Technologies ICT2013. – JeJu Island, 2013. – P. 203–207.
Review
For citations:
Zalesky B.A. METHOD FUZZY CLUSTERING k-MEANS WITH SMOOTHING PENALTY FUNCTION. Informatics. 2014;(3):14-20. (In Russ.)