Preview

Informatics

Advanced search

Adaptation of the modular number system in threshold secret sharing schemes

https://doi.org/10.37661/1816-0301-2025-22-1-90-97

Abstract

Objectives. The purpose of the research is to test the applicability of the adaptation of the modular number system using a masking transformation with a pseudo-random integer value to the original secret S in a modification of Adi Shamir’s (k, n)-threshold secret sharing scheme to reduce the complexity of calculating the basic integral characteristic to a theoretical minimum.

Methods. A modification of Adi Shamir's secret sharing scheme in a threshold cryptosystem based on modular arithmetic (MA cryptosystem) with the generation of shares of secret sharing participants in two stages is considered. Shamir’s scheme was chosen as optimal in terms of complexity, resource intensity, perfection and ideality; in addition, it is scalable – the number of participants can be increased to the order of the field p, without changing the ability to recover the secret. A masking transformation using a term with a pseudo-random integer value C for the shared secret S, the range of change of the pseudo-random parameter C agreed upon the range of changes in the values of the original signal is applied. The interval-modular form of the number of the secret value is applied too.

Results. It is shown that the use of the interval-modular form of the number S̅ – a masking transformation with a pseudo-random parameter of the number S of the original secret – reduces the complexity of calculating basic interval-index characteristics when solving threshold coding problems almost to a theoretical minimum. Adaptive coordination of changes in the pseudo-random parameter of the masking function with the domain of its results makes it possible to implement a minimally redundant modular decomposition of the masking function for any admissible basis of the based scheme.

Conclusion. The results of the presented work allow to conclude for modular threshold cryptosystems of secret sharing in distributed data processing systems that the use of a linear masking function and narrowing the range of changes in the masking analogue S̃ of the original secret S, allowing for minimally redundant coding for the selected p1, p2, …, pn, causes a significant reduction in the computational complexity of the calculated minimal-redundant modular arithmetic relations of integral characteristics within the framework of the model under study. Due to which a higher level of performance is achieved at the stage of decoding the original secret compared to other solutions.

About the Authors

A. F. Chernyavskiy
Belarusian State University
Belarus

Alexander F. Chernyavskiy - D. Sc. (Eng.), Acad. of the National Academy of Sciences of Belarus, Prof.

Av. Nezavisimosti, 4, Minsk, 220030



A. I. Kazlova
Belarusian State University
Belarus

Alena I. Kazlova - Ph. D. (Phys.-Math.), Assoc. Prof.

Av. Nezavisimosti, 4, Minsk, 220030



V. S. Sadov
Belarusian State University
Belarus

Vasiliy S. Sadov - Ph. D. (Eng.), Assoc. Prof.

Av. Nezavisimosti, 4, Minsk, 220030



A. A. Kolyada
Belarusian State University
Belarus

Andrei A. Kolyada - D. Sc. (Phys.-Math.).

Av. Nezavisimosti, 4, Minsk, 220030



References

1. Artjukhov Yu. V. Analysis of secret sharing schemes using probabilistic and combinatorial approaches in the implementation of threshold cryptosystems operating in distributed computer systems. Aktual'nye voprosy tehnicheskih nauk : materialy Mezhdunarodnoj zaochnoj nauchnoj konferencii, Perm', ijul' 2011 g. [Current Issues in Technical Sciences : Materials of the International Correspondence Scientific Conference, Perm, July 2011]. In G. D. Akhmetova (ed.). Perm’, Mercurii, 2011, 80 р. (In Russ.).

2. Koblitz N. A Course in Number Theory and Cryptography, second edition. Springer, 1994, 245 р.

3. Nosirov Z. A., Shcherbina O. V. Analysis of cryptographic secret sharing schemes for backup storage of key information. Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii [Caspian Journal: Management and High Technologies], 2019, no. 2(46) (In Russ.). Available at: https://cyberleninka.ru/article/n/analizkriptograficheskih-shem-razdeleniya-sekreta-dlya-rezervnogo-hraneniya-klyuchevoy-informatsii (accessed 06.01.2025).

4. Chervyakov N. I., Kolyada A. A., Lyahov P. A., Babenko M. G., Lavrinenko I. N., Lavrinenko A. V. Moduljarnaja arifmetika i ee prilozhenija v infokommunikacionnyh tehnologijah. Modular Arithmetic and its Applications in Infocommunication Technologies. Moscow, Fizmatlit, 2017, 400 p. (In Russ.).

5. Kharin Yu. S. Matematicheskie i komp'juternye osnovy kriptologii. Mathematical and Computer Foundations of Cryptology. Minsk, Novoe znanie, 2003, 382 p. (In Russ.).

6. Kolyada A. A., Pak I. T. Modulyarnye struktury konveyernoy obrabotki tsifrovoy informatsii. Modular Structures of Pipeline Processing of Digital Information. Minsk, Universitetskoe, 1992, 256 р. (In Russ.).

7. Chernyavskiy A. F., Kozlova E. I., Kolyada A. A. Features of machine arithmetic of high-performance modular computing structures. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika [Journal of the Belarusian State University. Mathematics and Informatics], 2023, no. 2, рр. 94–101 (In Russ.).

8. Vinogradova A. A. Sistemy razdeleniya sekreta. Secretion Separation Systems, 2017, 19 р. (In Russ.). Available at: http://hdl.handle.net/11701/11134 (accessed 27.01.2025).

9. Shamir A. How to share a secret. Communications of the ACM, November 1979, vol. 22, iss. 11, pp. 612–613. DOI: 10.1145/359168.359176.

10. Kolyada A. A., Kuchinskiu P. V., Chervyakov N. I. Threshold secret sharing method based on redundant modular computing structures. Informatsionnye tekhnologii [Information Technology], 2019, vol. 25, no. 9, рр. 553–560 (In Russ.).


Supplementary files

Review

For citations:


Chernyavskiy A.F., Kazlova A.I., Sadov V.S., Kolyada A.A. Adaptation of the modular number system in threshold secret sharing schemes. Informatics. 2025;22(1):90-97. (In Russ.) https://doi.org/10.37661/1816-0301-2025-22-1-90-97

Views: 398


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)