Preview

Informatics

Advanced search

Computer modeling of a diffusion in a mixture of ideal gases given the dependence of the diffusion coefficient on the entropy of mixing in Wolfram Mathematica

https://doi.org/10.37661/1816-0301-2024-21-4-46-57

Abstract

Objectives. The objective of the work is computer modeling of diffusion in ideal gas mixtures taking into account the dependence of the diffusion coefficient on the entropy of mixing according to the model proposed by one of the authors of the article, in Wolfram Mathematica.

Methods. Built-in function NDSolveValue in Wolfram Mathematica and the default solver were used for the numerical solution of the one-dimensional task; for the numerical solution of the two-dimensional task the same function was used, for which the Numerical Method of Lines was specified as the solver.

Results. The results of computer modeling of diffusion in a mixture of ideal gases are obtained taking into account the dependence of the diffusion coefficient on the entropy of mixing for two tasks in a one-dimensional formulation and one task in a two-dimensional formulation.

Conclusion. The conducted research and the obtained solutions in computer modeling of diffusion in a mixture of ideal gases taking into account the dependence of the diffusion coefficient on the entropy of mixing indicate that for solving tasks in the field of computer modeling of gas mixing in modern software tools could be used a mathematical model that is an alternative to popular modern models based on the description of the hydrodynamic properties of gases and the enthalpy of mixing, as well as other entropy models.

About the Authors

P. K. Shalkevich
International Sakharov Environmental Institute of Belarusian State University
Belarus

Pavel K. Shalkevich, Ph. D. (Eng.), Assoc. Prof., Assoc. Prof. of the Department of Information Technologies in Ecology and Medicine

st. Botanicheskaya, 15, Minsk, 220037



N. A. Shilov
Belarusian State University of Informatics and Radioelectronics
Belarus

Nikolay A. Shilov, Associate of the Department of Economic Informatics

st. P. Brovki, 6, Minsk, 220013



N. N. Grinchik
A. V. Luikov heat and mass transfer institute of the National academy of sciences of Belarus
Belarus

Nikolay N. Grinchik, D. Sc. (Phys.-Math.), Assoc. Prof., Leading Researcher of the Laboratory of Thermophysical Measurements

st. P. Brovki, 15, Minsk, 220072



References

1. Draganov B. H. Dynamics of diffusion of harmful emissions in the atmosphere. Al'ternativnaya energetika i ekologiya [Alternative Energy and Ecology], 2014, no. 15(155), рр. 122–125 (In Russ.).

2. Prohorov A. V. Diffusion model of emission distribution in the atmosphere. Aktual'nye problemy gumanitarnyh i estestvennyh nauk [Current Issues in the Humanities and Natural Sciences], 2010, no. 12, рр. 61–62 (In Russ.).

3. Grinchik N. N., Zayac G. M. Diffusion in a mixture of ideal gases taking into account the dependence of the diffusion coefficient on the entropy of mixing. XXI Mezhdunarodnaja nauchnaja konferencija po differencial'nym uravnenijam (Eruginskie chtenija–2023), Mogilev, 23–27 maja 2023 g. : materialy konferencii : v 2 chastjah [XXI International Scientific Conference on Differential Equations (Erugin Readings–2023), Mogilev, 23–27 May 2023 : Conference Proceedings : in 2 Parts]. Mogilev, Belorussko-Rossijskij universitet, 2023, part 2, рр. 81–83 (In Russ.).

4. Gibbs J. W. The collected works of J. Willard Gibbs : in Two Volumes. Vol. 1. Thermodynamics. New York, Longmans, Green and Co., 1928, 434 р.

5. Ejnshtejn A. Sobranie nauchnyh trudov : v 4 tomah. Collection of Scientific Papers : in 4 Volumes. Moscow, Nauka, 1966, vol. 3, 632 р. (In Russ.).

6. Elizarova T., Khokhlov A., Montero S. Numerical simulation of shock wave structure in nitrogen. Physics of Fluids, 2007, vol. 19, no. 6, р. 068102.

7. Roj E., Dmoch M. CFD study of gas mixing efficiency and comparisons with experimental data. 17th European Symposium on Computer Aided Process Engineering (ESCAPE17), Bucharest, Romania, 27–30 May 2007. Elsevier, 2007, vol. 24, рр. 509–514.

8. Klevs M., Zageris G., Ziemelis A. A., Dzelme V., Geza V., Jakovics A. Numerical insights into gas mixing system design for energy conversion processes. Latvian Journal of Physics and Technical Sciences, 2023, no. 6, рр. 44–59.

9. Yavorskij B. M., Detlaf A. A., Lebedev A. K. Spravochnik po fizike dlya inzhenerov i studentov vuzov. Physics Handbook for Engineers and University Students. In A. K. Lebedev (ed.). Moscow, Oniks, 2006, 1056 р. (In Russ.).

10. Kiselev A. P., Krasheninnikov A. A. Osnovy obshchej himii. Chast' 2. Termodinamika i kinetika himicheskogo processa. Fundamentals of General Chemistry. Part 2. Thermodynamics and Kinetics of Chemical Processes. Saint Petersburg, Baltijskij gosudarstvennyj tehnicheskij universitet, 2003, 116 р. (In Russ.).

11. Klinov A. V., Anashkin I. P., Minibaeva L. R. Molecular modeling of gas diffusion coefficients in polymers. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University], 2017, no. 19, рр. 57–59 (In Russ.).

12. Paskar' S. Yu. Anomalous diffusion of an ideal gas in a geological environment with fluctuating properties. Neft' i gaz–2020 : sbornik trudov 74-j Mezhdunarodnoj molodezhnoj nauchnoj konferencii, Moskva, 28 sentjabrja – 2 oktjabrja 2020 g. [Oil and Gas 2020 : Proceedings of the 74th International Youth Scientific Conference, Moscow, 28 September – 2 October 2020]. Moscow, Rossijskij gosudarstvennyj universitet nefti i gaza (Nacional'nyj issledovatel'skij universitet) imeni I. M. Gubkina, 2020, рр. 296–302 (In Russ.).


Review

For citations:


Shalkevich P.K., Shilov N.A., Grinchik N.N. Computer modeling of a diffusion in a mixture of ideal gases given the dependence of the diffusion coefficient on the entropy of mixing in Wolfram Mathematica. Informatics. 2024;21(4):46-57. (In Russ.) https://doi.org/10.37661/1816-0301-2024-21-4-46-57

Views: 396


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)