Preview

Informatics

Advanced search

Mathematical model of independence of alternatives in the theory of ratings

Abstract

This paper considers the alternative theory of measurement - theory of ratings. The axiomatic definition of ranking is based on definitions from category theory. The scope of the rating definition is the set of objects and the set of ordered pairs of objects. The rating is the transformation that maps the set of objects to the set of numeric values and the set of ordered pairs of objects to the difference of the corresponding numeric values. Finding the rating by subjective measurement requires special control of the information received. The method of alternatives can be used to verify the adequacy of experimental data to the axiomatic definition of the rating.

In the paper the definition of the independence of two variables in magnitude is formulated. It is assumed that for independent variables there is an additive or multiplicative representation of the rating. An example of subjective measurement using multi-criteria utility theory (MAUT), hierarchy analysis (AHP) and rating theory is considered. The AHP heuristic method can lead to classification errors. The mathematical model of the utility function in the axiomatic method MAUT is multiplicative or additive and generally corresponds to the rating model with independent variables.

About the Author

V. M. Romanchak
Belarusian National Technical University
Belarus

Vasily M. Romanchak - Cand. Sci. (Phys.-Math.), Assoc. Prof, of the Department of Engineering Mathematics.

Minsk



References

1. Knorring V. G. Razvitie reprezentacionnoj teorii izmerenij [The development of the representational theory of measurement]. Izmerenija, kontrol', avtomatizacija [Measurement, Control and Automation], 1980. no. 11-12, pp. 3-9 (in Russian).

2. Tolstova Yu. N. Kratkaja istorija razvitija reprezentativnoj teorii izmerenij [A brief history of the development of representative measurement theory]. Zavodskaja laboratorija [IndustrialLaboratory], 1999, no. 3, pp. 49-57 (in Russian).

3. Cliff N. Abstract measurement theory and the revolution that never happened. Psychological Science, 1992, vol. 3(3), pp. 186-190.

4. Romanchak V. M. Izmerenie nefizicheskoj velichiny [Measurement of non-physical quantity]. Sistemnyj analiz i prikladnaja informatika [System Analysis and Applied Informatics], 2017, no. 4, pp. 39-44 (in Russian).

5. Romanchak V. M. Sub''ektivnoe ocenivanie verojatnosti [The measurement of subjective probability]. Informatika [Informatics], 2018, vol. 15, no. 2, pp. 74-82 (in Russian).

6. Mac Lane S. Categories for the Working Mathematician. New York, Springer-Verlag, 1978, 317 р.

7. Fechner G. T. Elemente der Psychophysik. Leipzig, Breitkopf & Hartel, 1860, 336 р. (in German).

8. Thurstone L. L. Attitudes can be measurement. American Journal of Sociology, 1928, vol. 33, рр. 523-554.

9. Surdin V. G. Zvjozdy. The Stars. Moscow, Fizmatlit, 2008, 428 p. (in Russian).

10. Keeney R. L., Raiffa H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. New York, Wiley, 1976, 569 р.

11. Saaty T. L. The Analytic Hierarchy Process. New York, McGraw Hill, 1980.

12. Podinovski V. V., Podinovskaya O. V. O nekorrektnosti metoda analiza ierarhij [On the theoretical incorrectness of the analytic hierarchy]. Problemy upravlenija [Control Sciences], 2011, no. 1, pр. 8-13 (in Russian).

13. Mitikhin V. G. Ob odnom kontrprimere dlja metoda analiza ierarhij [On a counterexample for the analytic hierarchy process]. Problemy upravlenija [Control Sciences], 2012, no. 3, pр. 77-79 (in Russian).

14. Podinovski V. V., Podinovskaya O. V. Eshhe raz o nekorrektnosti metoda analiza ierarhij [Another note on the incorrectness of the analytic hierarchy]. Problemy upravlenija [Control Sciences], 2012, no. 4, pр. 75-78 (in Russian).


Review

For citations:


Romanchak V.M. Mathematical model of independence of alternatives in the theory of ratings. Informatics. 2019;16(4):40-50. (In Russ.)

Views: 670


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)