1. Liebert W., Pawelzik K., Schuster H.G. Optimal embedding of chaotic attractor from topological consideration // Europhys. Lett. - 1991. - V. 14. - № 6. - P. 521-526.
2. Casdagli M. Nonlinear prediction of chaotic time series // Physica D. - 1989. - V. 35. - № 3. - P. 335-356.
3. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series / C.-K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger // Chaos. - 1995 - V. 5. - № 1. - P. 82-87.
4. Tsonis A.A., Elsner J.B. Nonlinear prediction as a way of distinguishing chaos from random fractal sequences // Nature. -1992. -V. 358. - № 6362. - P. 217-222.
5. Прогноз качественного поведения динамической системы по хаотическому временному ряду / А.М. Фейгин, Я.И. Мольков и др. // Изв. вузов. Сер. Радиофизика. - 2001. - Т. 44. - № 5-6. - С. 376-398.
6. Nonlinear time series analysis of electrocardiograms / A. Bezerianos, T. Bountis, G. Papaioannou, P. Polydoropoulos // Chaos. - 1995. - V. 5. - № 1. - P. 95-101.
7. Albano A.M., Rapp P.E., Passamante A. Kolmogorov - Smirnov test distinguishes attractors with similar dimensions // Phys. Rev. E. - 1995. - V. 52. - № 1. - P. 196-206.
8. Dailyudenko V.F. Nonlinear time series processing by means of ideal topological stabilization analysis and scaling properties investigation // Proc. of the SPIE's Сonf. on Applications and Science of Computational Intelligence II. V. 3722. - Orlando, Florida, USA, 1999. - P. 108-119.
9. Кузнецов С.П. Сложная динамика генераторов с запаздывающей обратной связью // Изв. вузов. Сер. Радиофизика. - 1982. - Т. 25. - № 12. - С. 1410-1428.
10. Эльсгольц Л.Э., Норкин С.Б. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом. - М.: Наука, 1971. - 340 с.
11. Takens F. Detecting strange attractors in turbulence // Dynamical Systems and Turbulence. Lecture Notes in Math. - Springer, Berlin, 1981. - V. 898. - P. 366-381.
12. Келдыш Л.В. Некоторые вопросы топологии евклидовых пространств // УМН. - 1961.- Т. 16. - № 1 (97). - С. 3-18.
13. Broomhead D.S., Jones R., King G.P. Topological dimension and local coordinates from time series data // J. Phys. A.: Math. Gen. - 1987. - V. 20. - № 9. - P. L563- L569.
14. Dailyudenko V.F. Biomedical systems investigation by delayed feedback modeling and locally asymptotic approaches // Proc. of the Second Int. ICSC Congress on Computational Intelligence: Methods & Applications, Advanced Computing in Biomedicine (ACBM 2001). - Bangor, U.K., 2001. - P. 91-97.
15. Бифуркации и хаос в системе связанных генераторов с запаздыванием и инерцион-ностью / Р.В. Беляев, Э.В. Кальянов, В.Я. Кислов и др. // Радиотехника и электроника. - 2000. - Т. 45. - № 6. - С. 722-734.
16. Marcus C.M., Waugh F.R., Westervelt R.M. Nonlinear dynamics and stability of analog neural network // Physica D. - 1991. - V. 51. - № 1-3. - P. 234-247.
17. Schmitt K. Delay and Functional Differential Equations and Their Applications. - New York & London: Academic Press, 1972. - 396 р.
18. Митропольский Ю.А., Мартынюк Д.И. Периодические и квазипериодические колебания систем с запаздыванием. - Киев: Вища школа, 1979. - 247 с.
19. Дифференциальные уравнения с отклоняющимся аргументом / А.Н. Зверкин, Г.А. Каменский и др. // Тр. семинара по теории дифференциальных уравнений с отклоняющимся аргументом. - М.: Университет дружбы народов, 1963. - Т. 2. - С. 3-49.
20. Landa P.S., Rosenblum M.G. Modified Mackey - Glass model of respiration control // Phys. Rev. E. -1995. - Vol. 52. - № 1. - P. R36 - R39.
21. METHODOLOGY for STAR-CD VERSION 3.15A. - Computational Dynamics Limited, 2002.
22. Монин А.С., Яглом А.М. Статистическая гидромеханика. Т.1. - М.: Наука, 1965. - 640 с.