1. Thakur, S. Face recognition using Principal Component Analysis and RBF Neural Networks / S. Thakur [et al.] // IJSSST. - 2009. - Vol. 10, № 5. - P. 7-15.
2. Zhang, D. Diagonal Principal Component Analysis for Face Recognition / D. Zhang, Z.-H. Zhou, S. Chen // Pattern Recognition. - 2006. - Vol. 39, № 1. - P. 140-142.
3. Bidyanta, N. Pattern Recognition using Principal Component Analysis / N. Bidyanta // Binary Digits [Electronic resource]. - 2010. - Mode of access : https://sites.google.com/site/binarydigits10/articles/eigenface. - Date of access : 10.09.2012.
4. Xiaoli, L. A Novel Approach to Pattern Recognition Based on PCA-ANN in Spectroscopy/ L. Xiaoli, H. Yong // Lecture Notes in Computer Science. - 2006. - Vol. 4093. - P. 525-532.
5. Ferraz, A. The use of principal component analysis (PCA) for pattern recognition in Eucalyptus grandis wood biodegradation experiments / A. Ferraz [et al.] // World Journal of Microbiology and Biotechnology. - 1998. - Vol. 14, № 4. - P. 487-490.
6. Aivazyan, S.A. Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti. Spravochnoe izdanie / S.A. Aivazyan [i dr.]. - M. : Finansy i statistika, 1989. - 608 s.
7. Aivazyan, S.A. Prikladnaya statistika i osnovy ekonometriki / S.A. Aivazyan,V.S. Mkhitaryan. - M. : YuNITI, 1998. - 1005 s.
8. Dronov, S.V. Mnogomernyi statisticheskii analiz : uchebnoe posobie / S.V. Dronov. -Barnaul : Izd-vo Alt. gos. un-ta, 2003. - 213 s.
9. Ikramov, Kh.D. Nesimmetrichnaya problema sobstvennykh znachenii. Chislennye metody / Kh.D. Ikramov. - M. : Nauka, 1991. - 240 s.
10. Parlett, B. Simmetrichnaya problema sobstvennykh znachenii. Chislennye metody; per.s angl. / B. Parlett. - M. : Mir, 1983. - 384 s.
11. Stewart, G.W. A parallel implementation of the QR algorithm / G.W. Stewart // CiteSeerX - Scientific Literature Digital Library and Search Engine [Electronic resource]. - University park, USA, 1987. - Mode of access : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4400. - Date of access : 22.08.2012.
12. Henry, G. A parallel implementation of the nonsymmetric QR algorithm for distributed memory architectures / G. Henry, D. Watkins, J. Dongarra // SIAM Journal on Scientific Computing. - 2002. - Vol. 24, № 1. - P. 284-311.
13. Gonsales, R. Tsifrovaya obrabotka izobrazhenii / R. Gonsales, R. Vuds. - M. : Tekhnosfera, 2005. - 1072 s.
14. Smith, B.T. Matrix eigensystem routines - EISPACK guide / B.T. Smith [et al.] // Lecture Notes in Computer Science. - 1976. - Vol. 6. - 551 p.
15. Garbow, B.S. Matrix eigensystem routines - EISPACK guide extension / B.S. Garbow [et al.] // Lecture Notes in Computer Science. - 1977. - Vol. 51. - 343 p.
16. Pradun, D.V. Blochno-parallel'naya klasterizatsiya mul'tispektral'nykh izobrazhenii s pomoshch'yu algoritma maksimal'nogo potoka v seti / D.V. Pradun, B.A. Zalesskii // Informatika. - 2011. - № 2(30). - S. 12-20.
17. Pradun, D.V. Blochno-parallel'naya klasterizatsiya izobrazhenii na osnove nechetkoi logiki / D.V. Pradun, A.A. Kravtsov // Pyatyi Belorusskii kosmicheskii kongress : materialy kongressa. V 2 t. (25-27 oktyabrya 2011 goda, Minsk). - Minsk : OIPI NAN Belarusi, 2011. - T. 2. - C. 47-53.
18. Hastie, T. The Elements of Statistical Learning. Data mining, Inference, and Prediction (Second Ed.) / T. Hastie, R. Tibshirani, J. Friedman // Trevor Hastie - Publications [Electronic resource]. - 2009. - Mode of access : http://www.stanford.edu/~hastie/local.ftp Springer/ ESLII_print5.pdf. - Date of access : 12.03.2012.