Preview

Informatics

Advanced search

REDUCTION OF TRAINING SAMPLES DIMENSION IN PATTERN RECOGNITION OF SPACE IMAGES USING PRINCIPAL COMPONENTS ANALYSIS

Abstract

The essence of principal components analysis and the problem of dimension reduction are described. A method of principal components calculation is presented, which is based on the covariance matrix eigenvalues determination. Practical implementations of principal components analysis are described, which are based on QR-algorithm. Application of principal components analysis in space images classification for the reduction of training samples dimension is discussed.

About the Author

D. V. Pradun
Объединенный институт проблем информатики НАН Беларуси
Russian Federation


References

1. Thakur, S. Face recognition using Principal Component Analysis and RBF Neural Networks / S. Thakur [et al.] // IJSSST. – 2009. – Vol. 10, № 5. – P. 7–15.

2. Zhang, D. Diagonal Principal Component Analysis for Face Recognition / D. Zhang, Z.-H. Zhou, S. Chen // Pattern Recognition. – 2006. – Vol. 39, № 1. – P. 140–142.

3. Bidyanta, N. Pattern Recognition using Principal Component Analysis / N. Bidyanta // Binary Digits [Electronic resource]. – 2010. – Mode of access : https://sites.google.com/site/binarydigits10/articles/eigenface. – Date of access : 10.09.2012.

4. Xiaoli, L. A Novel Approach to Pattern Recognition Based on PCA-ANN in Spectroscopy/ L. Xiaoli, H. Yong // Lecture Notes in Computer Science. – 2006. – Vol. 4093. – P. 525–532.

5. Ferraz, A. The use of principal component analysis (PCA) for pattern recognition in Eucalyptus grandis wood biodegradation experiments / A. Ferraz [et al.] // World Journal of Microbiology and Biotechnology. – 1998. – Vol. 14, № 4. – P. 487–490.

6. Айвазян, С.А. Прикладная статистика. Классификация и снижение размерности. Справочное издание / С.А. Айвазян [и др.]. – М. : Финансы и статистика, 1989. – 608 с.

7. Айвазян, С.А. Прикладная статистика и основы эконометрики / С.А. Айвазян,В.С. Мхитарян. – М. : ЮНИТИ, 1998. – 1005 с.

8. Дронов, С.В. Многомерный статистический анализ : учебное пособие / С.В. Дронов. –Барнаул : Изд-во Алт. гос. ун-та, 2003. – 213 с.

9. Икрамов, Х.Д. Несимметричная проблема собственных значений. Численные методы / Х.Д. Икрамов. – М. : Наука, 1991. – 240 с.

10. Парлетт, Б. Симметричная проблема собственных значений. Численные методы; пер.с англ. / Б. Парлетт. – М. : Мир, 1983. – 384 с.

11. Stewart, G.W. A parallel implementation of the QR algorithm / G.W. Stewart // CiteSeerX - Scientific Literature Digital Library and Search Engine [Electronic resource]. – University park, USA, 1987. – Mode of access : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4400. – Date of access : 22.08.2012.

12. Henry, G. A parallel implementation of the nonsymmetric QR algorithm for distributed memory architectures / G. Henry, D. Watkins, J. Dongarra // SIAM Journal on Scientific Computing. – 2002. – Vol. 24, № 1. – P. 284–311.

13. Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. – М. : Техносфера, 2005. – 1072 с.

14. Smith, B.T. Matrix eigensystem routines – EISPACK guide / B.T. Smith [et al.] // Lecture Notes in Computer Science. – 1976. – Vol. 6. – 551 p.

15. Garbow, B.S. Matrix eigensystem routines – EISPACK guide extension / B.S. Garbow [et al.] // Lecture Notes in Computer Science. – 1977. – Vol. 51. – 343 p.

16. Прадун, Д.В. Блочно-параллельная кластеризация мультиспектральных изображений с помощью алгоритма максимального потока в сети / Д.В. Прадун, Б.А. Залесский // Информатика. – 2011. – № 2(30). – С. 12–20.

17. Прадун, Д.В. Блочно-параллельная кластеризация изображений на основе нечеткой логики / Д.В. Прадун, А.А. Кравцов // Пятый Белорусский космический конгресс : материалы конгресса. В 2 т. (25-27 октября 2011 года, Минск). – Минск : ОИПИ НАН Беларуси, 2011. – Т. 2. – C. 47–53.

18. Hastie, T. The Elements of Statistical Learning. Data mining, Inference, and Prediction (Second Ed.) / T. Hastie, R. Tibshirani, J. Friedman // Trevor Hastie – Publications [Electronic resource]. – 2009. – Mode of access : http://www.stanford.edu/~hastie/local.ftp/ Springer/ ESLII_print5.pdf. – Date of access : 12.03.2012.


Review

For citations:


Pradun D.V. REDUCTION OF TRAINING SAMPLES DIMENSION IN PATTERN RECOGNITION OF SPACE IMAGES USING PRINCIPAL COMPONENTS ANALYSIS. Informatics. 2013;(1):57-65. (In Russ.)

Views: 760


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)