СНИЖЕНИЕ РАЗМЕРНОСТИ ОБУЧАЮЩИХ ВЫБОРОК ПРИ РАСПОЗНАВАНИИ ОБРАЗОВ НА КОСМИЧЕСКИХ ИЗОБРАЖЕНИЯХ С ПОМОЩЬЮ МЕТОДА ГЛАВНЫХ КОМПОНЕНТ
Аннотация
Описываются сущность метода главных компонент и задача снижения размерности в про-цессе статистической обработки. Приводится способ вычисления главных компонент на основе оп-ределения собственных значений ковариационной матрицы. Описываются алгоритмы практической реализации метода главных компонент на основе QR-алгоритма. Проводится анализ возможности использования метода главных компонент при классификации космических изображений с целью снижения размерности обучающих выборок.
Список литературы
1. Thakur, S. Face recognition using Principal Component Analysis and RBF Neural Networks / S. Thakur [et al.] // IJSSST. – 2009. – Vol. 10, № 5. – P. 7–15.
2. Zhang, D. Diagonal Principal Component Analysis for Face Recognition / D. Zhang, Z.-H. Zhou, S. Chen // Pattern Recognition. – 2006. – Vol. 39, № 1. – P. 140–142.
3. Bidyanta, N. Pattern Recognition using Principal Component Analysis / N. Bidyanta // Binary Digits [Electronic resource]. – 2010. – Mode of access : https://sites.google.com/site/binarydigits10/articles/eigenface. – Date of access : 10.09.2012.
4. Xiaoli, L. A Novel Approach to Pattern Recognition Based on PCA-ANN in Spectroscopy/ L. Xiaoli, H. Yong // Lecture Notes in Computer Science. – 2006. – Vol. 4093. – P. 525–532.
5. Ferraz, A. The use of principal component analysis (PCA) for pattern recognition in Eucalyptus grandis wood biodegradation experiments / A. Ferraz [et al.] // World Journal of Microbiology and Biotechnology. – 1998. – Vol. 14, № 4. – P. 487–490.
6. Айвазян, С.А. Прикладная статистика. Классификация и снижение размерности. Справочное издание / С.А. Айвазян [и др.]. – М. : Финансы и статистика, 1989. – 608 с.
7. Айвазян, С.А. Прикладная статистика и основы эконометрики / С.А. Айвазян,В.С. Мхитарян. – М. : ЮНИТИ, 1998. – 1005 с.
8. Дронов, С.В. Многомерный статистический анализ : учебное пособие / С.В. Дронов. –Барнаул : Изд-во Алт. гос. ун-та, 2003. – 213 с.
9. Икрамов, Х.Д. Несимметричная проблема собственных значений. Численные методы / Х.Д. Икрамов. – М. : Наука, 1991. – 240 с.
10. Парлетт, Б. Симметричная проблема собственных значений. Численные методы; пер.с англ. / Б. Парлетт. – М. : Мир, 1983. – 384 с.
11. Stewart, G.W. A parallel implementation of the QR algorithm / G.W. Stewart // CiteSeerX - Scientific Literature Digital Library and Search Engine [Electronic resource]. – University park, USA, 1987. – Mode of access : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4400. – Date of access : 22.08.2012.
12. Henry, G. A parallel implementation of the nonsymmetric QR algorithm for distributed memory architectures / G. Henry, D. Watkins, J. Dongarra // SIAM Journal on Scientific Computing. – 2002. – Vol. 24, № 1. – P. 284–311.
13. Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. – М. : Техносфера, 2005. – 1072 с.
14. Smith, B.T. Matrix eigensystem routines – EISPACK guide / B.T. Smith [et al.] // Lecture Notes in Computer Science. – 1976. – Vol. 6. – 551 p.
15. Garbow, B.S. Matrix eigensystem routines – EISPACK guide extension / B.S. Garbow [et al.] // Lecture Notes in Computer Science. – 1977. – Vol. 51. – 343 p.
16. Прадун, Д.В. Блочно-параллельная кластеризация мультиспектральных изображений с помощью алгоритма максимального потока в сети / Д.В. Прадун, Б.А. Залесский // Информатика. – 2011. – № 2(30). – С. 12–20.
17. Прадун, Д.В. Блочно-параллельная кластеризация изображений на основе нечеткой логики / Д.В. Прадун, А.А. Кравцов // Пятый Белорусский космический конгресс : материалы конгресса. В 2 т. (25-27 октября 2011 года, Минск). – Минск : ОИПИ НАН Беларуси, 2011. – Т. 2. – C. 47–53.
18. Hastie, T. The Elements of Statistical Learning. Data mining, Inference, and Prediction (Second Ed.) / T. Hastie, R. Tibshirani, J. Friedman // Trevor Hastie – Publications [Electronic resource]. – 2009. – Mode of access : http://www.stanford.edu/~hastie/local.ftp/ Springer/ ESLII_print5.pdf. – Date of access : 12.03.2012.
Рецензия
Для цитирования:
Прадун Д.В. СНИЖЕНИЕ РАЗМЕРНОСТИ ОБУЧАЮЩИХ ВЫБОРОК ПРИ РАСПОЗНАВАНИИ ОБРАЗОВ НА КОСМИЧЕСКИХ ИЗОБРАЖЕНИЯХ С ПОМОЩЬЮ МЕТОДА ГЛАВНЫХ КОМПОНЕНТ. Информатика. 2013;(1):57-65.
For citation:
Pradun D.V. REDUCTION OF TRAINING SAMPLES DIMENSION IN PATTERN RECOGNITION OF SPACE IMAGES USING PRINCIPAL COMPONENTS ANALYSIS. Informatics. 2013;(1):57-65. (In Russ.)