Preview

Informatics

Advanced search

ADAPTIVE COMPRESSING OF THE HIGH DYNAMIC RANGE OF DIGITAL RADAR SATELLITE IMAGES

Abstract

Transformation of a digital radar image with a wide dynamic range of luminance values (up to 216 tones) for visualization on a standard monitor is considered. The monitor has 28 gray value range or any of three basic colors in the RGB system. Linear quantization of the luminance values of the original image generates a nearly black image with small light blobs, since most of the original values are less than 255–512 and are reduced by 256 times. To solve the problem, it is proposed to use a nonlinear logarithmic transformation with a parameter calculated from the original images. On real data received from the TerraSAR-X satellite in the geoTIFF format, comparative studies with other compression algorithms for a wide dynamic range of image brightness are performed. It is shown that the proposed solution allows creating a visually better image in comparison with the known algorithms.

 

About the Author

V. V. Starovoitov
The United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus
D. Sc. (Engineering), Chief Researcher


References

1. Schlick, C. Quantization techniques for visualization of high dynamic range pictures / C. Schlick // Photorealistic Rendering Techniques. – Berlin, Heidelberg, 1995. – P. 7–20.

2. Larson, G. W. A visibility matching tone reproduction operator for high dynamic range scenes / G. W. Larson, H. Rushmeier, C. Piatko // IEEE Transactions on Visualization and Computer Graphics. – 1997. – Vol. 3, no. 4. – P. 291–306.

3. Starovoitov, V. Comparative Analysis of Some Dynamic Range Reduction Methods for SAR Image Visualization // Intern. Conf. on Pattern Recognition and Information Processing. – Cham: Springer, 2017. – P. 63–76.

4. Adaptive logarithmic mapping for displaying high contrast scenes / F. Drago [et al.] // Computer Graphics Forum. – 2003. – Vol. 22, no. 3. – P. 419–426.

5. Reinhard, E. Dynamic range reduction inspired by photoreceptor physiology / E. Reinhard, K. Devlin // IEEE Transactions on Visualization and Computer Graphics. – 2005. – Vol. 11, no. 1. – P. 13–24.

6. Smith, B. Instantaneous companding of quantized signals / B. Smith // Bell Labs Technical Journal. – 1957. – Vol. 36, no. 3. – P. 653–709.

7. Берлин, А. Н. Оконечные устройства и линии абонентского участка информационной сети / А. Н. Берлин. – М.: Национальный открытый университет «ИНТУИТ», 2016. – 395 с. 8. ITU-R BT.709-5: Parameter values for the HDTV standards for production and international programme exchange [Electronic resource]. – June 2015. – Mode of access: https://www.itu.int/rec/R-REC-BT.709/en. – Date of access: 20.12.2017.

8. Sample Radar Imagery [Electronic resource]. – Mode of access: http://www.intelligence-airbusds.com/en/23- sample-imagery.php#. – Date of access: 20.12.2017.

9. High dynamic range image compression by optimizing tone mapped image quality index / K. Ma [et al.] // IEEE Transactions on Image Processing. – 2015. – Vol. 24, no. 10. – P. 3086–3097.

10. Yeganeh, H. Objective quality assessment of tone-mapped images / H. Yeganeh, Z. Wang // IEEE Transactions on Image Processing. – 2013. – Vol. 22, no. 2. – P. 657–667.

11. FSITM: a feature similarity index for tone-mapped images / H. Z. Nafchi [et al.] // IEEE Signal Processing Letters. – 2015. – Vol. 22, no. 8. – P. 1026–1029.


Review

For citations:


Starovoitov V.V. ADAPTIVE COMPRESSING OF THE HIGH DYNAMIC RANGE OF DIGITAL RADAR SATELLITE IMAGES. Informatics. 2018;15(1):81-91. (In Russ.)

Views: 814


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)