Preview

Informatics

Advanced search

THE USE OF THE FINITE DIFFERENCE METHOD FOR CALCULATION OF ELECTRONIC STATES IN MIS-STRUCTURE WITH SINGLE DONOR 1

Abstract

Numerical modeling of electronic state evolution due to non-uniform external electric field in the structure metal-insulator-semiconductor with solitary donor center is carried out. Considering a nanometer disc-shaped gate as a source of the electric field, the problem for the Laplace equation in multilayered medium is solved numerically to determine the distribution of the gate potential. The energy spectrum of a bound electron is calculated from the problem for the stationary Schrödinger equation. Finite difference schemes are constructed to solve both the problems. Difference scheme for the Schrödinger equation takes into account cusp condition for the wave function at the donor location. To solve the problem for the Laplace equation, asymptotic boundary conditions for approximating the external field potential at large distances from the gate in different layers are suggested. These conditions allow to reduce the calculation domain for the electrostatic problem essentially. The effect of the boundary conditions on the accuracy of calculating the potential and energies is investigated. Using the developed difference schemes, the dependences of the energy spectrum of the bound electron on the gate potential are calculated, and the values of critical potential at which the wave function of the electron is relocated are determined. It has been found on the basis of calculation results, that governing parameter for the description of electronic behavior is the potential difference between the donor and semiconductor surface. It has been shown that critical potential difference does not depend on dielectric thickness and permittivity.

About the Authors

E. A. Levchuk
Belarusian State University, Minsk
Belarus
assistant


S. V. Lemeshevskii
Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Physics and Mathematics), Deputy Director


L. F. Makarenko
Belarusian State University, Minsk
Belarus
Ph. D. (Physics and Mathematics), Associate Professor


References

1. Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs / A. Asenov [et al.] // IEEE transactions on electron devices. – 2003. – Vol. 50, no. 9. – P. 1837–1852.

2. Koenraad, P. M. Single dopants in semiconductors / P. M. Koenraad, M. E. Flatte // Nature materials. – 2011. – Vol. 10, no. 2. – P. 91–100.

3. Kane, B. E. A silicon-based nuclear spin quantum computer / B. E. Kane // Nature (London). – 1998. – Vol. 393, no. 6681. – P. 133–137.

4. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures / R. Vrijen [et al.] // Physical Review A. – 2000. – Vol. 62, no. 1. – P. 012306-1–012306-10.

5. Charge-based quantum computing using single donors in semiconductors / L.C.L. Hollenberg [et al.] // Physical Review B. – 2004. – Vol. 69, no. 11. – P. 113301-1–113301-5.

6. Gate-induced ionization of single dopant atoms / G. D. J. Smit [et al.] // Physical Review B. – 2003. – Vol. 68, no.19. – P. 193302-1–193302-5.

7. Numerical study of hydrogenic effective mass theory for an impurity P donor in Si in the presence of an electric field and interfaces / L. M. Kettle [et al.] // Physical Review B. – 2003. – Vol. 68, no. 7. – P. 075317-1–075317-7.

8. MacMillen, D. B. Variational solutions of simple quantum systems subject to variable boundary conditions. II. Shallow donor imputities near semiconductor interfaces: Si, Ge / D. B. MacMillen, U. Landman // J. Chem. Phys. – 1984. – Vol. 80, no. 2. – P. 1691–1702.

9. Calderon, M. J. Quantum control of donor electrons at the Si-SiO2 interface / M. J. Calderon, B. Koiller, S. Das Sarma // Physical Review Lett. – 2006. – Vol. 96, no. 9. – P. 096802-1–096802-5.

10. Calderon, M. J. External field control of donor electron exchange at the Si/SiO2 interface / M. J. Calderon, B. Koiller, S. Das Sarma // Physical Review B. – 2007. – Vol. 75, no. 12. – P. 125311-1–125311-11.

11. Effect of a metallic gate on the energy levels of a shallow donor / A. F. Slachmuylders [et al.] // Appl. Phys. Lett. – 2008. – Vol. 92, no. 8. – P. 083104-1–083104-3.

12. Shallow donor states near a semiconductor-insulator-metal interface / Y. L. Hao [et al.] // Physical Review B. – 2009. – Vol. 80, no. 3. – P. 035329-1–035329-10.

13. Nikolyuk, V. A. The energy structure of quantum dots induced in quantum wells by a nonuniform electric field / V. A. Nikolyuk, I. V. Ignatiev // Semiconductors. – 2007. – Vol. 41, no. 12. – P. 1422–1429.

14. Самарский, А. А. Теория разностных схем / А. А. Самарский. – М.: Наука, 1989. – 616 с.

15. Souza, G. V. B. Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field / G. V. B. Souza, A. Bruno-Alfonso // Physica E. – 2015. – Vol. 66. – P. 128–132.

16. Modeling a nanowire superlattice using the finite difference method in cylindrical polar coordinates / C. Galeriu [et al.] // Comp. Phys. Commun. – 2004. – Vol. 157, no. 2. – P. 147–159.

17. Bingel, W. A. A physical interpretation of the cusp conditions for molecular wave functions / W. A. Bingel // Theoretica Chimica Acta. – 1967. – Vol. 8, no. 1. – P. 54–61.

18. Смайт, В. Электростатика и электродинамика / В. Смайт. – М.: Изд-во иностр. лит., 1954. – 604 с.

19. Levchuk, E. A. On controlling the electronic states of shallow donors using a finite-size metal gate / E. A. Levchuk, L.F. Makarenko // Semiconductors. – 2016. – Vol. 50, no. 1. – P. 89–96.

20. Сьярле, Ф. Метод конечных элементов для эллиптических задач / Ф. Сьярле. – М.: Мир, 1980. – 510 с.

21. Левчук, Е. А. Влияние магнитного поля на локализацию волновой функции электрона в системе нанозатвор – донор / Е. А. Левчук, Л. Ф. Макаренко // Известия НАН Беларуси. Сер. физ.-мат. наук. – 2016. – № 2. – P. 68–75.


Review

For citations:


Levchuk E.A., Lemeshevskii S.V., Makarenko L.F. THE USE OF THE FINITE DIFFERENCE METHOD FOR CALCULATION OF ELECTRONIC STATES IN MIS-STRUCTURE WITH SINGLE DONOR 1. Informatics. 2018;15(1):7-20. (In Russ.)

Views: 889


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)