1. Endryus, G. Teoriya razbienii / G. Endryus. - M. : Nauka, 1982. - 256 s.
2. Eiler, L. Vvedenie v analiz beskonechnykh / L. Eiler. - M. : Gos. izd. fiz.-mat. lit., 1961. - T. 1. - 316 s.
3. Dickson, L.E. History of the Theory of Numbers / L.E. Dickson. - Vol. II : Diophantine Analysis. - Washington : Carnegie Inst., 1919. - 520 p.
4. Shlyk, V.A. Politopy razbienii chisel / V.A. Shlyk // Vestsі Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk. - 1996. - № 3. - S. 89-92.
5. Shlyk, V.A. Polytopes of partitions of numbers / V.A. Shlyk // European J. Combin. - 2005. - Vol. 26, № 8. - P. 1139-1153.
6. Emelichev, V.A. Mnogogranniki, grafy, optimizatsiya (kombinatornaya teoriya mnogogrannikov) / V.A. Emelichev, M.M. Kovalev, M.K. Kravtsov. - M. : Nauka, 1981. - 341 s.
7. Shlyk, V.A. Kombinatornye operatsii porozhdeniya vershin politopa razbienii chisel / V.A. Shlyk // Dokl. Nats. akad. nauk Belarusi. - 2009. - T. 53, № 6. - S. 27-32.
8. Kholl, M. Kombinatorika / M. Kholl. - M. : Mir, 1970. - 424 s.
9. Gupta, H. Tables of partitions / H. Gupta, C.E. Gwyther, C.P. Winter // Royal society mathematical tables. - Vol. 4. - Cambridge : University Press, 1958. - 132 p.
10. Sloane, N.J.A. a(n) = number of partitions of n (the partition numbers) [Electronic resource] / N.J.A. Sloane. - 2010. - Mode of access : http://oeis.org/A000041. - Date of access : 11.10.2015.
11. Zoghbi, A. Fast algorithms for generating integer partitions / A. Zoghbi, I. Stojmenovic // Intern. J. Computer Math. - 1998. - Vol. 70. - P. 319-332.
12. Reingol'd, E. Kombinatornye algoritmy: teoriya i praktika / E. Reingol'd, Yu. Nivergel't, N. Deo. - M. : Mir, 1980. - 476 s.
13. Nijenhius, A. A method and two algorithms on the theory of partitions / A. Nijenhius, H.S. Wilf // J. Comb. Theory A. - 1975. - Vol. 18. - P. 219-222.
14. Riha, W. Efficient algorithms for doubly and multiply restricted partitions / W. Riha, K.R. James // Algorithm 29. Computing. - 1976. - Vol. 16. - P. 163-168.
15. Constant time generation of integer partitions / K. Yamanaka [et al.] // IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. - 2007. - Vol. E90-A, № 5. - P. 888-895.
16. Knuth, D.E. Generating all partitions. Pre-fascicle 3B of The Art of Computer Programming. A draft of sections 7.2.1.4-5 [Electronic resource] / D.E. Knuth. - 2004. - Mode of access : http://www.cs.utsa.edu/~wagner/knuth/fasc3b.pdf. - Date of access : 11.10.2015.
17. Kelleher, J. Generating all partitions: a comparison of two encodings [Electronic resource] / J. Kelleher, V. O'Sullivan. - 2009. - Mode of access : http://arxiv.org/pdf/0909.2331v1.pdf. - Date of access : 11.10.2015.
18. Opdyke, J.D. A unified approach to algorithms generating unrestricted and restricted integer compositions and integer partitions / J.D. Opdyke // J. Math. Model. Algor. - 2010. - Vol. 9, № 1. - P. 53-97.
19. Stojmenovic, I. Generating all and random instances of a combinatorial object / I. Stojmenovic // Handbook of applied algorithms: solving scientific, engineering, and practical problem. - Hoboken : John Wiley&Sons, 2008. - P. 1-38.
20. Shlyk, V.A. Number of vertices of the integer partition polytope [Electronic resource] / V.A. Shlyk. - 2012. - Mode of access : http://oeis.org/A203898. - Date of access : 11.10.2015.
21. Shlyk, V.A. Number of support partitions-vertices [Electronic resource] / V.A. Shlyk. - 2012. - Mode of access : http://oeis.org/A203899. - Date of access : 11.10.2015.
22. Ehrenborg, R. Number of knapsack partitions of n [Electronic resource] / R. Ehrenborg. - 2005. - Mode of access : http://oeis.org/A108917. - Date of access : 11.10.2015.
23. Shlyk, V.A. Kriterii predstavleniya razbienii chisel v vide vypukloi kombinatsii dvukh razbienii / V.A. Shlyk // Vestnik BGU. Ser. 1. - 2009. - № 2. - S. 109-114.
24. Shlyk, V.A. Integer partitions from the polyhedral point of view / V.A. Shlyk // Electron. Notes Discrete Math. - 2013. - Vol. 43. - P. 319-327.
25. Shlyk, V.A. Polyhedral approach to integer partitions / V.A. Shlyk // Journal of Combinatorial Mathematics and Combinatorial Computing. - 2014. - Vol. 89. - P. 113-128.
26. Gawrilow, E. Polymake: a framework for analyzing convex polytopes / E. Gawrilow, E.M. Joswig // Polytopes - combinatorics and computation. - Basel : Birkhäuser, 2000. - P. 43-73.
27. Shlyk, V.A. O vershinakh politopov razbienii chisel / V.A. Shlyk // Dokl. Nats. akad. nauk Belarusi. - 2008. - T. 52, № 3. - S. 5-10.
28. Handbook of Mathematical Functions / M. Abramowitz, I.A. Stegun [eds]. - Applied Math. Series 55. - Washington : Government Printing Office, 1972. - 1046 p.
29. Barvinok, A.I. Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed / A.I. Barvinok // Math. Oper. Res. - 1994. - Vol. 19. - P. 769-779.
30. Effective lattice point counting in rational convex polytopes / J.A. De Loera [et al.] // Journal of Symbolic Computation. - 2004. - Vol. 38, № 4. - P. 1273-1302.
31. Ehrenborg, R. The Möbius function of partitions with restricted block sizes / R. Ehrenborg, M.A. Readdy // Adv. in Appl. Math. - 2007. - Vol. 39, № 3. - P. 283-292.