Preview

Informatics

Advanced search

DESIGN OF BEZIER SPLINE SURFACES OVER BIVARIATE NETWORKS OF CURVES

Abstract

The paper presents an approach to construct interpolating spline surfaces over a bivariate net-work of curves with rectangular patches. Patches of the interpolating spline surface are constructed by means of blending their boundaries with special polynomials. In order to ensure a necessary para-metric continuity of the designed surface the polynomials of the corresponding degree must be used. The constructed interpolating spline surfaces have a local shape control. If the surface frame is deter-mined by means of Bezier curves, then patches of the interpolating spline surface are Bezier surfaces. The presented approach to surface modeling can be used in such applications as computer graphics and geometric design.

About the Author

A. P. Pobegailo
Белорусский государственный университет
Belarus


References

1. Robin, J.Y. Geometry and Interpolation of Curves and Surfaces / J.Y. Robin, M. McLeod, L. Baart. – Cambridge University Press, 2011. – 430 p.

2. Peters, J. Local smooth surface interpolation: a classification / J. Peters // Computer Aided Geometric Design. – 1990. – Vol. 7, no. 1–4. – P. 191–195.

3. Vida, Q.J. A survey of blending methods that use parametric surfaces / Q.J. Vida, R.R. Mar-tin, T. Várady // Computer-Aided Design. – 1994. – Vol. 26, no. 5. – P. 341–365.

4. Coons, S.A. Surfaces for computer-aided design of space forms / S.A. Coons // Report MAC-TR-41, Project MAC. – Massachusetts Institute of Technology, 1967.

5. Forrest, A.R. On Coons and other methods for the representation of curved surfaces / A.R. Forrest // Computer Graphics and Image Processing. – 1972. – Vol. 1, no. 4. – P. 341–359.

6. Фокс, А. Вычислительная геометрия. Применение в проектировании и производстве / А. Фокс, М. Пратт. – М. : Мир, 1982. – 304 с.

7. Gordon, W.J. Spline-blended surface interpolation through curve networks / W.J. Gordon // J. Math. and Mech. – 1969. – Vol. 18, no. 10. – P. 931–957.

8. Juhásza, I. Surface interpolation with local control by linear blending / I. Juhásza, M. Hoff-mann // Annales Mathematicae et Informaticae. – 2009. – Vol. 36. – P. 77–84.

9. Побегайло, А.П. Полиномиальная деформация кривых и ее применение в геометриче-ском моделировании / А.П. Побегайло // Вестник БГУ. Сер. 1. Физика. Математика. Информа-тика. – 2009. – № 3. – С. 106−109.

10. Pobegailo, A.P. Interpolation of Rectangular Grids Using Deformation of Curves / A.P. Po-begailo // Pattern Recognition and Information Processing (PRIP)’2009 : proc. of the 10th Intern. Conf. (19–21 May, 2009, Minsk, Belarus). – Minsk : Publ. Center of BSU, 2009. – P. 334–338.

11. Gregory, J. Smooth interpolation without twist constraints / J. Gregory ; ed. R.E. Barnhill, R.F. Riesenfeld // Computer Aided Geometric Design. – Academic Press, 1974. – P. 71–88.

12. Farin, G. Agnostic G1 Gregory Surfaces / G. Farin, D. Hansford // Graphical Models. – 2012. – Vol. 76, no. 4. – P. 346–350.

13. Comninos, P. An interpolating piecewise bicubic surface with shape parameters / P. Comni-nos // Computers & Graphics. – 2001. – Vol. 25, no. 3. – P. 463–481.

14. Chiyokura, H. Design of solids with free-form surfaces / H. Chiyokura, F. Kimura // Com-puter Graphics. – 1983. – Vol. 17, no. 3. – P. 289–298.

15. Shirman, L.A. Local surface interpolation with B_ezier patches / L.A. Shirman, C.H. Sequin // Computer Aided Geometric Design. – 1987. – Vol. 4, no. 4. – P. 279–295.


Review

For citations:


Pobegailo A.P. DESIGN OF BEZIER SPLINE SURFACES OVER BIVARIATE NETWORKS OF CURVES. Informatics. 2014;(3):62-71. (In Russ.)

Views: 713


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)