Recognition of Subcircuits of Tristable Elements in CMOS VLSI
https://doi.org/10.37661/1816-0301-2025-22-4-82-93
Abstract
Objectives. The problem of extracting high-level structure at the level of logical elements from a transistor-level circuit is considered. Obtaining such a representation significantly reduces the execution time of VLSI topology verification at the design stage and serves as the basis for integrated circuit redesign. The goal of the study is to develop a method and software tools for extracting blocks representing tristable elements in CMOS circuits.
Methods. Methods for recognizing subcircuits representing tri-state elements, in particular tristable inverters, are proposed. The task is reduced to first searching for CMOS subcircuits and transmission gates subcircuits, and then for inverter structures based on them.
Results. C++ programs have been developed that implement methods for extracting three-state elements from a flat SPICE description of a transistor circuit and including descriptions of the corresponding blocks in the hierarchical description of the generated logical network.
Conclusion. The developed programs for searching the tristable inverters are included in the program for decompiling transistor CMOS circuits and tested as part of it on practical examples of transistor-level circuits.
About the Author
Л. ЧеремисиноваBelarus
Ljudmila D. Cheremisinova, D. Sc. (Eng.), Prof., Chief Researcher,
6, Surganova st., Minsk, 220012.
References
1. Baker R. J. CMOS Circuit Design, Layout, and Simulation, third edition. Wiley-IEEE Press, 2010, 1214 p.
2. Hunt V. D. Reengineering: Leveraging the Power of Integrated Product Development. Wiley, 1993, 283 p.
3. Zhang N., Wunsch D. C., Harary F. The subcircuit extraction problem. Proceedings IEEE International Behavioral Modeling and Simulation Workshop, 2005, vol. 33, no. 3, рр. 22–25.
4. Cheremisinov D. I., Cheremisinova L. D. Extracting a logic gate network from a transistor-level CMOS circuit. Mikrojelektronika [Russian Microelectronics], 2019, vol. 48, no. 3, рр. 224–234 (In Russ.). DOI: 10.1134/S0544126919030037.
5. Kundu S. GateMaker: A transistor to gate level model extractor for simulation, automatic test pattern generation and verification. Proceedings of the International Test Conference, Washington, USA, 18–23 October 1998. Washington, 1998, рр. 372–381.
6. Yang L., Shi C.-J. R. FROSTY: A program for fast extraction of high-level structural representation from circuit description for industrial CMOS circuits. Integration the VLSI Journal, 2006, vol. 39, no. 4, рр. 311–339.
7. Han M., Kim H., Gu G. Efficient subgraph matching: Harmonizing dynamic programming, adaptive matching order, and failing set together. Proceedings of International Conference on Management of Data (SIGMOD '19), Amsterdam, Netherlands, 30 June – 5 July 2019. Amsterdam, 2019, рр. 1429–1446.
8. Rabaev J. M., Chandrakasan A., Nikolic B. Digital Integrated Circuits, 2nd edition. Pearson, 2002, 800 p.
9. Cheremisinov D. I., Cheremisinova L. D. Logical gates recognition in a flat transistor circuit. Informatika [Informatics], 2021, vol. 18, no. 4, pp. 96−107 (In Russ.). DOI: 10.37661/1816-0301-2021-18-4-96-107.
10. Cheremisinov D. I., Cheremisinova L. D. Canonization of graphs during transistor circuits decompilation. Informatika [Informatics], 2022, vol. 19, no. 3, pp. 25−39 (In Russ.). DOI: 10.37661/1816-0301-2022-19-3-25-39.
11. Balaji G. N., Aathira V., Ambhikavathi K., Geethiga S., Havin R. Combinational circuits using transmission gate logic for power optimization. International Research Journal of Engineering and Technology (IRJET), 2016, vol. 3, no. 5, pp. 649–654.
12. Cheremisinov D. I., Cheremisinova L. D. Recognition of pass transistor logic subcircuits in CMOS circuits. Izvestija vysshih uchebnyh zavedenij. Jelektronika [Proceedings of Universities. Electronics], 2025, vol. 30, no. 1, pp. 51–63 (In Russ.). DOI: 10.24151/1561-5405-2025-30-1-51-63.
13. Ugryumov Ye. P. Cifrovaja shemotehnika. Digital Circuit Design. Saint Petersburg, BHV-Peterburg, 2000, 528 p. (In Russ.).
14. Cheremisinov D. I., Cheremisinova L. D. Reverse engineering of VLSI for equipment safety. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh system [Problems of Developing Promising Micro- and Nanoelectronic Systems]. In A. L. Stempkovskij (ed.). Moscow, Institut problem proektirovanija v mikro- jelektronike Rossijskoj akademii nauk, 2022, iss. III, pp. 10–17 (In Russ.).
Review
For citations:
Recognition of Subcircuits of Tristable Elements in CMOS VLSI. Informatics. 2025;22(4):82-93. (In Russ.) https://doi.org/10.37661/1816-0301-2025-22-4-82-93


















