ALGORITHMS FOR IDENTIFYING DRUG-RESISTANCE MUTATIONS IN M. TUBERCULOSIS GENOMES
Abstract
Analysis of whole-genome sequences often leads to problems of large dimensionality where the number of parameters exceeds the number of available observations. We offer methodology of genome-wide association study and investigate various approaches to assess contribution of mutations in the emergence and development of drug resistance in Mycobacterium tuberculosis. We present the results of our experiments aimed at identifying resistance mutations to the major anti- TB drugs based on data obtained from patients in Belarus.
About the Authors
R. S. SergeevBelarus
I. S. Kavaliou
Belarus
A. V. Tuzikov
Belarus
A. Rosenthal
United States
A. Gabrielian
United States
References
1. Borrell, S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis / S. Borrell, S. Gagneux // Intern. J. Tuberc. Lung Dis. – 2009. – № 13(12). – P. 1456–1466.
2. Patterson, N. Population structure and eigenanalysis / N. Patterson, A. L. Price, D. Reich // PLoS Genet. – 2006. – № 2(12). – P. 2074–2093.
3. Mantel, N. Statistical aspects of the analysis of data from retrospective studies of disease / N. Mantel, W. Haenszel // J. National Cancer Inst. – 1959. – № 22(4). – P. 719–748.
4. Principal components analysis corrects for stratification in genome-wide association studies / A.L. Price [et al.] // Nat. Genet. – 2006. – № 38(8). – P. 904–909.
5. Agresti, A. An introduction to categorical data analysis / A. Agresti. – Wiley, 2002. – Ch. 6. – P. 231–236.
6. PLINK: a tool set for whole-genome association and population-based linkage analyses / S. Purcell [et al.] // Am. J. Hum. Genet. – 2007. – № 81(3). – P. 559–575.
7. Bush, W.S. Genome-wide association studies / W.S. Bush, J.H. Moore // PLoS. Comput. Biol. – 2012. – № 8(12). – P. 1–11.
8. Holm, S. A simple sequentially rejective Bonferroni test procedure testing / S. Holm // Scandinavian Journal of Statistics. – 1979. – № 6. – P. 65–70.
9. Benjamini, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing / Y. Benjamini, Y. Hochberg // Journal of the Royal Statistical Society. – 1995. – № 57. – P. 289–300.
10. Ng, A.Y. Feature selection, L1 vs. L2 regularization, and rotational invariance / A.Y. Ng // Proc. of the 21st Intern. Conf. on Machine Learning. – Ban, Canada, 2004.
11. Friedman, J. Regularization paths for generalized linear models via coordinate descent / J. Friedman, T. Hastie, R. Tibshirani // Journal of Statistical Software. – 2010. – № 33(1). – P. 1–22.
12. Henderson, C.R. Sire evaluation and genetic trends / C.R. Henderson // Proc. Anim. Breeding and Genetic Symp. in honor of Dr. J.L. Lush. – Champaign, 1973. – P. 10–41.
13. Zhou, X. Genome-wide efficient mixed-model analysis for association studies / X. Zhou, M. Stephens // Nature Genetics. – 2012. – № 44(7). – P. 821–824.
14. Dobra, A. The Mode oriented stochastic search (MOSS) for log-linear models with conjugate priors / A. Dobra, H. Massam // Statistical Methodology. – 2010. – № 7. – P. 240–253.
15. Applications of the mode oriented stochastic search (MOSS) algorithm for discrete multiway data to genomewide studies / A. Dobra [et al.] // Bayesian Modeling in Bioinformatics. – CRC Press, 2010. – Ch. 3. – P. 63–94.
16. Kolmogorov, V. What energy functions can be minimized via graph cuts? / V. Kolmogorov, R. Zabih // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2004. – № 26(2). – P. 147–159.
17. Tuberculosis drug resistance mutation database / A. Sandgren [et al.] // PLoS Med. – 2009. – № 6(2). – P. 132–136.
18. GenoType MTBDRplus – your test system for a fast and reliable way to detect MDR-TB // Hain Lifesciences [Electronic resource]. – 2015. – Mode of access : http://www.hain- lifescience.de/ en/products/microbiology/mycobacteria/genotype-mtbdrplus.html. – Date of access : 10.05.2015.
19. GenoType MTBDRsl – your important assistance for detection of XDR-TB // Hain Lifesciences [Electronic resource]. – 2015. – Mode of access : http://www.hain- lifescience.de/en/products/ microbiology/mycobacteria/genotype-mtbdrsl.html. – Date of access : 10.05.2015.
20. Devlin, B. Genomic control for association studies / B. Devlin, K. Roeder // Biometrics. – 1999. – № 55. – P. 997–1004.
Review
For citations:
Sergeev R.S., Kavaliou I.S., Tuzikov A.V., Rosenthal A., Gabrielian A. ALGORITHMS FOR IDENTIFYING DRUG-RESISTANCE MUTATIONS IN M. TUBERCULOSIS GENOMES. Informatics. 2016;(1):75-91. (In Russ.)