1. Ul'man, Dzh. Vychislitel'nye aspekty SBIS / Dzh. Ul'man. - M. : Radio i svyaz', 1990. - 480 s.
2. Bibilo, P.N. Kremnievaya kompilyatsiya zakaznykh SBIS / P.N. Bibilo. - Minsk : In-t tekhn. kibernetiki AN Belarusi, 1996. - 268 s.
3. Biswas, N.N. Logic design theory / N.N. Biswas. - Prentice-Hall International, 1993. - 306 p.
4. Hachtel, G.D. An Algorithm for optimal PLA Folding / G.D. Hachtel, A.R. Newton, A.L. Sangiovanni-Vincentelli // IEEE Trans. Computer-Aided Design of Integrated Circuit Syst. - 1982. - Vol. CAD-1, no. 2. - P. 63-77.
5. DeMicheli, G.A. Multiple Constrained Folding of Programmable Logic Arrays: Theory and Applications / G.A. DeMicheli, A.L. Sangiovanni-Vincentelli // IEEE Trans. Computer-Aided Design. - 1983. - Vol. CAD-2, no. 3. - P. 151-167.
6. Cheremisinova, L.D. Minimizatsiya ploshchadi regulyarnykh matrichnykh struktur zakaznykh SBIS / L.D. Cheremisinova // Informatika. - 2004. - № 1. - S. 121-131.
7. Minimizatsiya ploshchadi zakaznykh SBIS na etape topologicheskogo proektirovaniya tsifrovykh skhem / L.D. Cheremisinova [i dr.] // Upravlyayushchie sistemy i mashiny. - 2011. - № 4 (240). - S. 42-50.
8. Devadas, S. Optimal Layout via Boolean Satisfiability / S. Devadas // Proc. of Intern. Conf. on Computer-Aided Design (ICCAD ’89). - Santa Clara, CA, USA, 1989. - P. 294-297.
9. Optimum PLA Folding through Boolean Satisfiability / J.M. Quintana [et al.] // Asian South Pacific Design Automation Conference (ASP DAC’95). - Chiba, Japan, 1995. - P. 289- 293.
10. Bryant, R.E. Graph-based algorithms for Boolean function manipulation / R.E. Bryant // IEEE Trans. Computers. - 1986. - Vol. C-35, no. 8. - P. 677-691.
11. Cheremisinova, L.D. Svertka regulyarnykh struktur na osnove resheniya logicheskikh uravnenii / L.D. Cheremisinova // Tanaevskie chteniya : doklady Chetvertoi Mezhdunar. nauch. konf. (29-30 marta 2010, Minsk). - Minsk : OIPI NAN Belarusi, 2010. - C. 129- 134.
12. Mahajan, Y. Zchaff2004: An Efficient SAT Solver / Y. Mahajan, Z. Fu , S. Malik // Theory and Applications of Satisfiability Testing (2004 SAT Solver Competition and QBF Solver Evaluation (Invited Papers)). - Berlin, Heidelberg : Springer, 2005. - P. 360-375.
13. Goldberg, E. BerkMin: A Fast and Robust SAT-Solver / E. Goldberg , Y. Novikov // Design, Automation, and Test in Europe. - Paris, 2002. - P. 142-149.
14. Eén, N., MiniSat / N. Eén, N. Sörensson [Electronic resource]. - Mode of access : http://www.cs.chalmers.se/Cs/Research/FormalMethods MiniSat. - Date of access : 09.02.2015.
15. Lecky, I.E. Graph theoretic flgorithms for the PLA folding problem / I.E. Lecky, O.I. Murphy, R.G. Abshe // IEEE Trans. Computer-Aided Design. - 1989. - Vol. 8, no. 9. - P. 1014-1021.
16. Cheremisinova, L.D. Some results in optimal PLA folding / L.D. Cheremisinova // Proc. of the Third Intern. Conf. on Computer-Aided Design of Discrete Devices (CAD DD’99). - Minsk UIIP NAS B, 1999. - Vol. 1. - P. 59-64.
17. Cheremisinova, L. SAT-Based Approach to Verification of Logical Descriptions with Functional Indeterminacy / L. Cheremisinova, D. Novikov // 8th Intern. Workchop on Boolean problems. - Freiberg (Sachsen), 2008. - P. 59-66.