Enhancing the secrecy of a cryptographic key generated using synchronized artificial neural networks1
https://doi.org/10.37661/1816-0301-2020-17-1-102-108
Abstract
About the Authors
M. L. RadziukevichBelarus
Maryna L. Radziukevich, Master Sci. (Eng.), Head of the Testing Laboratory for Information Security Requirements, Winner of the competition of young scientists at the XXIV scientific-practical conference "Comprehensive information protection."
V. F. Golikov
Belarus
Vladimir F. Golikov, Dr. Sci. (Eng.), Professor of the Department of Information Technologies in Management
References
1. Kanter I., Kinzel W. The Theory of Neural Networks and Cryptography, Quantum Computers and Computing, 2005, vol. 5, nо. 1, рр. 130−140.
2. Kinzel W., Kanter I. Neural cryptography. 9th International Conference on Neural Information Processing, Singapore, 2002. Singapore, 2002, vol. 3, рр. 1351–1354.
3. Ruttor A., Kanter I., Kinzel W. Dynamics of neural cryptography. Physical Review E, 2007, vol. 75, iss. 5, рр. 1–9.
4. Plonkovski M., Urbanovich P. P., Zharsky I. M. (ed.). Kriptograficheskoye preobrazovaniye informatsii na osnove neyrosetevykh tekhnologii [Cryptographic transformation of information based on neural network technology]. Trudy Belorusskogo gosudarstvennogo tehnologicheskogo universiteta. Ser. VI. Fizikomatematicheskiye nauki i informatika [Proceedings of the Belarusian State Technical University. Ser. VI. Physics and Mathematics and Computer Science]. Minsk, Belarusian State Technical University, 2005, рр. 161–164 (in Russian).
5. Golikov V. F., Brich N. V., Pivovarov V. L. O nekotorykh problemakh v zadachakh raspredeleniya kriptograficheskikh klyuchey s pomoshch'yu iskusstvennykh neyronnykh setey [About some problems in the distribution of cryptographic keys using artificial neural networks]. Sistemnyy analiz i prikladnaya informatika [System Analysis and Applied Informatics], 2014, no. 1–3, рр. 42–46 (in Russian).
6. Golikov V. F., Ksenevich A. Yu. Ataka na sinkhroniziruyemyye iskusstvennyye neyronnyye seti, formiruyushchiye obshchiy sekret, metodom otlozhennogo perebora [Attack on synchronized artificial neural networks, forming a common secret, by delayed brute force method]. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radiojelektroniki [Reports of the Belarusian State University of Informatics and Radioelectronics], 2017, no. 8, рр. 48–53 (in Russian).
7. Golikov V. F., Radziukevich M. L. Formirovaniye obshchego sekreta s pomoshch'yu iskusstvennykh neyronnykh setey [The formation of a common secret using artificial neural networks]. Sistemnyy analiz i prikladnaya informatika [System Analysis and Applied Informatics], 2019, no. 2, рр. 49–56 (in Russian).
8. Bennett C. H., Brassard G., Crepeau C., Maurer U. M. Generalized privacy amplification. IEEE Transaction on Information Theory, 1995, vol. 41, nо. 6, рр. 1915–1923.
9. Boumeyster D., Ekert A., Tsaylinger A. Fizika kvantovoy informatsii. Physics of Quantum Information. Moscow, Postmarket, 2002, 276 p. (in Russian).
10. Kilin S. Ya., Khoroshko D. B., Nizovtsev A. P. Kvantovaya kriptografiya: idei i praktika. Quantum cryptography: Ideas and Practice. Minsk, Belaruskaya navuka, 2007, 391 p. (in Russian).
Review
For citations:
Radziukevich M.L., Golikov V.F. Enhancing the secrecy of a cryptographic key generated using synchronized artificial neural networks1. Informatics. 2020;17(1):102-108. (In Russ.) https://doi.org/10.37661/1816-0301-2020-17-1-102-108