Preview

Информатика

Расширенный поиск

Анализ системы обслуживания с повторными вызовами, неоднородными приборами и марковским процессом поступления

https://doi.org/10.37661/1816-0301-2020-17-1-29-38

Полный текст:

Аннотация

Анализируется многолинейная система массового обслуживания с повторными попытками и разнородными приборами. Запросы поступают в систему в соответствии с марковским процессом прибытия. Прибывающие первичные запросы и запросы, которые повторяют попытки попасть на обслуживание с орбиты, занимают свободный прибор с самой высокой скоростью обслуживания, если таковой имеется. В противном случае, если все приборы заняты,  запросы переходят на орбиту  бесконечной емкости, с которой осуществляют повторные попытки попасть на обслуживание. Общая интенсивность потока повторных попыток бесконечно возрастает с увеличением числа запросов на орбите. Время обслуживания запроса имеет экспоненциальное распределение с интенсивностью, зависящей от номера прибора. Поведение системы описывается многомерной цепью Маркова с непрерывным временем, которая принадлежит классу асимптотически квазитеплицевых цепей Маркова. Это позволяет вывести простое и прозрачное условие эргодичности и вычислить стационарное распределение вероятностей состояний цепи. Представленные численные результаты иллюстрируют динамику некоторых показателей эффективности системы и важность учета корреляции в процессе поступления запросов.

Об авторе

Мэй Лю
Белорусский государственный университет
Беларусь
Лю Мэй, аспирантка кафедры теории вероятностей и математической статистики факультета прикладной математики и информатики


Список литературы

1. Artalejo J. R., Gomez-Corral A. Retrial Queueing Systems: a Computational Approach. Springer, Berlin – Heidelberg, 2008, 318 р.

2. Falin G. I., Templeton J. G. C. Retrial Queues. Chapman & Hall, London, 1997, 328 р.

3. Breuer L., Dudin A. N., Klimenok V. I. A retrial system. Queueing Systems, 2002, vol. 40, pp. 433–457.

4. Lucantoni D. New results on the single server queue with a batch Markovian arrival process. Communication in Statistics-Stochastic Models, 1991, vol. 7, pp. 1–46.

5. Chakravarthy S. R. The batch Markovian arrival process: a review and future work. In Krishnamoorthy A., Raju N., Ramaswami V. (eds.). Advances in Probability Theory and Stochastic Processes, Notable Publications Inc., New Jersey, 2001, pp. 21–29.

6. Vishnevskii V. M., Dudin A. N. Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks. Automation and Remote Control, 2017, vol. 78, pp. 1361–1403.

7. Neuts M. Matrix-Geometric Solutions in Stochastic Models. The Johns Hopkins University Press, Baltimore, 1981, 352 р.

8. Efrosinin D. V. Controlled Queueing Systems with Heterogeneous Servers. Trier University, Germany, 2004, 229 р.

9. Lin W., Kumar P. R. Optimal control of a queueing system with two heterogeneous servers. IEEE Transactions on Automatic Control, 1984, vol. 29, pp. 696–703.

10. Luh H. P., Viniotis I. Optimality of Threshold Policies for Heterogeneous Server Systems. Raleign, North Carolina State University, 1990.

11. Nobel R., Tijms H. C. Optimal control of a queueing system with heterogeneous servers. IEEE Transactions on Automatic Control, 2000, vol. 45, no. 4, pp. 780–784.

12. Rosberg Z., Makowski A. M. Optimal routing to parallel heterogeneous servers-small arrival rates. Transactions on Automatic Control, 1990, vol. 35, no. 7, pp. 789–796.

13. Rykov V. V. Monotone control of queueing systems with heterogeneous servers. Queueing Systems, 2001, vol. 37, pp. 391–403.

14. Rykov V. V., Efrosinin D. V. Numerical analysis of optimal control polices for queueing systems with heterogeneous servers. Information Processes, 2002, vol. 2, no. 2, pp. 252–256.

15. Efrosinin D., Breuer L. Threshold policies for controlled retrial queues with heterogeneous servers. Annals of Operations Research, 2006, vol. 41, no. 1, pp. 139–162.

16. Falin G. Stability of the multiserver queue with addressed retrials. Annals of Operations Research, 2012, vol. 196, no. 1, рр. 241–246.

17. Mushko V. V. Multiserver queue with addressed retrials. Annals of Operations Research, 2006, vol. 141, pp. 283–301.

18. Klimenok V., Dudin A. Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory. Queueing Systems, 2006, vol. 54, no. 4, pp. 245–259.

19. Dudin S., Dudina O. Retrial multi-server queueing system with PHF service time distribution as a model of a channel with unreliable transmission of information. Applied Mathematical Modelling, 2019, vol. 65, pp. 676–695.


Для цитирования:


Лю М. Анализ системы обслуживания с повторными вызовами, неоднородными приборами и марковским процессом поступления. Информатика. 2020;17(1):29-38. https://doi.org/10.37661/1816-0301-2020-17-1-29-38

For citation:


Liu M. Analysis of retrial queue with heterogeneous servers and Markovian arrival process. Informatics. 2020;17(1):29-38. (In Russ.) https://doi.org/10.37661/1816-0301-2020-17-1-29-38

Просмотров: 152


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)