Preview

Informatics

Advanced search

Signal correction for combinational automation devices on the basis of Boolean complement with control of calculations by parity

https://doi.org/10.37661/1816-0301-2020-17-2-71-85

Abstract

Simpler than known structure of the system with error correction in calculations is proposed based on duplication and triplication of blocks with majority principle of choosing the values of signals. It is advisable to use the new fault-tolerant structure for automation devices with combinational logic. In fault-tolerant structure synthesis, the parity method is used to establish the fact of a fault in the main logic unit and the logical complement method is used determine incorrectly calculated output functions and to generate signals for their correction. The method also allows to adjust the values of incorrectly calculated functions. Structural diagram and description of error correction system are given. The synthesis algorithm of control equipment is described with minimization of the technical implementation complexity. The experiment results with control combinational circuits are given, confirming the high efficiency of proposed system structure with error correction.

About the Authors

V. V. Sapozhnikov
Emperor Alexander I St. Petersburg State Transport University
Russian Federation

Valery V. Sapozhnikov, Dr. Sci. (Eng.), Professor, Professor of "Automation and Remote Control on Railways" Department

Saint Petersburg



Vl. V. Sapozhnikov
Emperor Alexander I St. Petersburg State Transport University
Russian Federation

Vladimir V. Sapozhnikov, Dr. Sci. (Eng.), Professor, Professor of "Automation and Remote Control on Railways" Department

Saint Petersburg



D. V. Efanov
"LocoTech-Signal" LLC; Russian University of Transport
Russian Federation

Dmitry V. Efanov, Dr. Sci. (Eng.), Associate Professor, Head  of  Integrated  Control  Systems  Division; Professor of "Automation, Remote Control and Communication on Railway Transport" Department

Moscow



References

1. Sogomonyan E. S., Slabakov E. V. Samoproveryaemye ustrojstva i otkazoustojchivye sistemy. Self-checking Devices and Fault-tolerance Systems. Moscow, Radio i svyaz', 1989, 208 p. (in Russian).

2. Sapozhnikov V. V., Sapozhnikov Vl. V., Hristov H. A., Gavzov D. V., Sapozhnikov Vl. V. (ed.). Metody postroeniya bezopasnyh mikroehlektronnyh sistem zheleznodorozhnoj avtomatiki. Methods of Synthesis Safety Microelectronic Railway Automation Systems. Moscow, Transport, 1995, 272 p. (in Russian).

3. Kharchenko V. S. Modeli i svojstva mnogoal'ternativnyh otkazoustojchivyh system [Models and properties of multialternative fault-tolerant systems]. Avtomatika i telemekhanika [Automation and Remote Control], 1992, no. 12, рp. 140–147 (in Russian).

4. Sklyar V. V., Kharchenko V. S. Otkazoustojchivye komp'yuternye sistemy upravleniya s versionno-porogovoj adaptaciej: sposoby adaptacii, ocenka nadezhnosti, vybor arhitektur [Fault-tolerant computer-aided control systems with multiversion-threshold adaptation: adaptation methods, reliability estimation, and choice of an architecture]. Avtomatika i telemekhanika [Automation and Remote Control], 2002, no. 6, рp. 131–145 (in Russian).

5. Gavrilov M. A., Ostianu V. M., Potekhin A. I. Nadezhnost' diskretnyh sistem [Reliability of discrete systems]. Itogi nauki i tekhniki. Seriya "Teoriya veroyatnostej. Matematicheskaya statistika. Teoreticheskaya kibernetika" [Results of Science and Technology. Series "Probability Theory. Math statistics. Theoretical Cybernetics"], 1969, 1970, рр. 7–104 (in Russian).

6. Goessel M., Graf S. Error Detection Circuits. London, McGraw-Hill, 1994, 261 p.

7. Fujiwara E. Code Design for Dependable Systems: Theory and Practical Applications. John Wiley & Sons, 2006, 720 p.

8. Berezyuk N. T., Andrushchenko A. G., Moshchickij S. S., Glushkov V. I., Benesha M. M., Gavrilov V. A., N. T. Berezyuk (ed.). Kodirovanie informacii (dvoichnye kody). Information Coding (Binary Codes). Kharkiv, Vishcha shkola, 1978, 252 p. (in Russian).

9. Nikolos D. Self-testing embedded two-rail checkers. Journal of Electronic Testing: Theory and Applications, 1998, vol. 12, no. 1–2, рp. 69–79.

10. Sapozhnikov V. V., Sapozhnikov Vl. V., Efanov D. V., Dmitriev V. V. Novye struktury sistem funkcional'nogo kontrolya logicheskih skhem [New structures of the concurrent error detection systems for logic circuits]. Avtomatika i telemekhanika [Automation and Remote Control], 2017, no. 2, рp. 127–143 (in Russian).

11. Hamamatsu M., Tsuchiya T., Kikuno T. Finding the optimal configuration of a cascading TMR system. 14th IEEE Pacific Rim International Symposium on Dependable Computing, 15–17 December 2008, Taipei, Taiwan. Taipei, 2008, pp. 329–350. https://doi.org/10.1109/PRDC.2008.12

12. Matsumoto K., Uehara M., Mori H. Evaluating the fault tolerance of stateful TMR. 13th International Conference on Network-Based Information Systems, 14–16 September 2010, Takayama, Japan. Takayama, 2010, pp. 332–336. https://doi.org/10.1109/NBiS.2010.86

13. Ostanin S. A. Sintez otkazoustojchivyh kombinacionnyh skhem [Synthesis of fail-safe combinational circuits]. Prikladnaya diskretnaya matematika (prilozhenie № 1) [Applied Discrete Mathematics (Appendix No. 1)], 2009, no. 1, рр. 71–72 (in Russian).

14. Stempkovskij A. L., Tel'puhov D. V., Zhukova T. D., Gurov S. I., Solov'ev R. A. Metody sinteza sboeustojchivyh kombinacionnyh KMOP-skhem, obespechivayushchih avtomaticheskoe ispravlenie oshibok [Synthesis methods for fault-tolerant combinational CMOS circuits providing automatic error correction]. Izvestiya Juzhnogo federal'nogo universiteta. Tekhnicheskie nauki [Proceedings of the Southern Federal University. Technical Science], 2017, no. 7(192). pp. 197–210. https://doi.org/10.23683/2311-3103-2017-7-197-210 (in Russian).

15. Borecký J., Kohlík M., Vít P., Kubátová H. Еnhanced duplication method with TMR-like masking abilities. Euromicro Conference on Digital System Design (DSD), 31 August – 2 September 2016, Limassol, Cyprus. Limassol, 2016, pp. 690–693. https://doi.org/10.1109/DSD.2016.91

16. Krcma M., Kotasek Z., Lojda J. Triple modular redundancy used in field programmable neural networks. Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS 2017), 29 September – 2 October 2017, Novi Sad, Serbia. Novi Sad, 2017, pp. 372–377. https://doi.org/10.1109/EWDTS.2017.8110128

17. Sogomonyan E. S. Self-Correction Fault-Tolerant Systems. Preprint, October 2018, 30 p.

18. Sapozhnikov V. V., Sapozhnikov Vl. V., Efanov D. V. Osnovy teorii nadezhnosti i tekhnicheskoj diagnostiki. Fundamentals of the Theory of Reliability and Technical Diagnostics. Saint Petersburg, Lan, 2019, 588 p. (in Russian).

19. Sapozhnikov V. V., Sapozhnikov Vl. V., Dmitriev A. V., Morozov A. V., Gessel' M. Organizaciya funkcional'nogo kontrolya kombinacionnyh skhem metodom logicheskogo dopolneniya [The organization of functional control of combinational circuits by the method of complement]. Electronnoe modelirovanie [Electronic Modeling], 2002, vol. 24, no. 6, рp. 51–66 (in Russian).

20. Gessel' M., Morozov A. V., Sapozhnikov V. V., Sapozhnikov Vl. V. Logicheskoe dopolnenie – novyj metod kontrolya kombinacionnyh skhem [Logic complement, a new method of checking the combinational circuits]. Avtomatika i telemekhanika [Automation and Remote Control], 2003, no. 1, рp. 167–176 (in Russian).

21. Gessel' M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Concurrent Checking. Dordrecht, Springer Science + Business Media B.V., 2008, 184 p.

22. Morosow A, Saposhnikov V. V., Saposhnikov Vl. V., Goessel M. Self-checking combinational circuits with unidirectionally independent outputs. VLSI Design, 1998, vol. 5, iss. 4, pp. 333–345. https://doi.org/10.1155/1998/20389

23. Efanov D. V., Sapozhnikov V. V., Sapozhnikov Vl. V. Sintez samoproveryaemyh kombinacionnyh ustrojstv na osnove vydeleniya special'nyh grupp vyhodov [Synthesis of self-checking combination devices based on allocating special groups of outputs]. Avtomatika i telemekhanika [Automation and Remote Control], 2018, no. 9, рp. 79–94 (in Russian).

24. Sapozhnikov V. V., Sapozhnikov Vl. V. Samoproveryaemye diskretnye ustrojstva. Self-Checking Discrete Devises. Saint Petersburg, Energoatomizdat, 1992, 224 p. (in Russian).

25. Sentovich E. M., Singh K. J., Lavagno L., Moon C., Murgai R., …, Sangiovanni-Vincentelli A. SIS: A System for Sequential Circuit Synthesis. University of California, Berkeley, 1992, 45 p.

26. Sentovich E. M., Singh K. J., Moon C., Savoj H., Brayton R. K., Sangiovanni-Vincentelli A. Sequential circuit design using synthesis and optimization. Proceedings IEEE International Conference on Computer Design: VLSI in Computers & Processors, 11–14 October 1992, Cambridge, MA, USA. Cambridge, 1992, pp. 328–333. https://doi.org/10.1109/ICCD.1992.276282


Review

For citations:


Sapozhnikov V.V., Sapozhnikov V.V., Efanov D.V. Signal correction for combinational automation devices on the basis of Boolean complement with control of calculations by parity. Informatics. 2020;17(2):71-85. (In Russ.) https://doi.org/10.37661/1816-0301-2020-17-2-71-85

Views: 708


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)