Generation of address sequences with a given switching activity
https://doi.org/10.37661/1816-0301-2020-17-1-47-62
Abstract
About the Authors
V. N. YarmolikBelarus
Vyacheslav N. Yarmolik, Dr. Sci. (Eng.), Professor
N. A. Shevchenko
Germany
Nikolai А. Shevchenko, Student, Member of the Scientific Community Weird Science Club,
References
1. Bushnell M. L., Agrawal V. D. Essentials of Electronic Testing for Digital, Memory & Mixed-Signal VLSI Circuits. New York, Kluwer Academic Publishers, 2000, 690 p.
2. Wang L.-T., Wu C.-W., Wen X. VLSI Test Principles and Architectures: Design for Testability. Amsterdam, Elsevier, 2006, 808 p.
3. Yarmolik S. V., Yarmolik V. N. Mnogokratnue nerazrushayuschie marshevue testu s izmenyaemumi adresnumi posledovatel’nostymi [Multiple non-destructive marching tests with variable address sequences]. Avtomatika i telemehanika [Automation and Remote], 2007, no. 4, рр. 126–137 (in Russian).
4. Yarmolik V. N., Yarmolik S. V. Adresnue posledovatel’nosti dlya mnogokratnogo testirovaniya OZU [Address sequences for repeated testing of RAM]. Informatika [Informatics], 2014, no. 2(42), рр. 124–136 (in Russian).
5. Sharma A. K. Semiconductor Memories: Technology, Testing, and Reliability. London, John Wiley & Sons, 2002, 480 р.
6. Ugryumov E. P. Cifrovaya shemotehnika. Digital Circuitry. Saint Petersburg, BHV-Peterburg, 2010, 816 р. (in Russian).
7. Pomeranz I. An adjacent switching activity metric under functional broadside tests. IEEE Transaction on Computers, 2013, vol. 62, no. 4, pр. 404–410.
8. Pomeranz I., Reddy S. M. Switching activity as a test compaction heuristic for transition faults. IEEE Transaction VLSI Systems, 2010, vol. 18, no. 9, рр. 1357–1361.
9. Pedram M. Power minimization in IC design: principles and applications. ACM Transactions Design Automation Electronic Systems, 1996, vol. 1, рр. 3–56.
10. Cheremisinova L. D., Kirienko N. А. Optimizaciya skobochnuh predstavlenii bulevuh phunkcii s uchetom energopotrebleniya [Optimization of bracket representations of Boolean functions taking into account energy consumption]. Informatika [Informatics], 2011, no. 3(31), рр. 77–87 (in Russian).
11. Murashko I. А., Yarmolik V. N. Vstroennoe samotestirovanie. Metodu minimizacii energopotrebleniya. Built-in Self Test. Methods to Minimize Power Consumption. Saarbrücken, LAP Lambert Academic Publishing, 2012, 348 р. (in Russian).
12. Girard P., Guiller L., Landrault C., Pravossoudovitch S. A test vector ordering technique for switching activity reduction during test operation. Proceedings Ninth Great Lakes Symposium on VLSI, Ypsilanti, MI, USA, 1999. Ypsilanti, 1999, рр. 24–27.
13. Kirienko N. А., Cheremisinov D. I., Cheremisinova L. D. Optimizaciya mnogourovnevuh predstavlenii logicheskih shem glya sokrascheniya ploschadi kristala SBIS i energopotrebleniya [Optimization of multi-level representations of logic circuits to reduce VLSI chip area and power consumption]. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Seryya fizika-matematychnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series], 2015, no. 2, рр. 103–111 (in Russian).
14. Wang S., Gupta S. K. An automatic test pattern generator for minimizing switching activity during scan testing activity. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2002, vol. 21, no. 8, рр. 954–968.
15. Wen X., Yamashita Y., Kajihara S., Wang L.-T., Saluja K. K., Kinoshita K. On low-capture-power test generation for scan testing. Proceedings VLSI Test Symposium, Palm Springs, California, USA, 2005. Palm Springs, 2005, рр. 265–270.
16. Yarmolik V. N., Yarmolik S. V. Modified gray and counter sequences for memory test address generation. Proceedings of the 13th International Conference MIXDES Design of Integrated Circuits and Systems, Gdynia, Poland, 2006. Gdynia, 2006, рр. 572–576.
17. Yarmolik V. N. Kontrol’ i diagnostika vuchislitel’nuh system. Monitoring and Diagnostics of Computer Systems. Minsk, Bestprint, 2019, 387 р. (in Russian).
18. Sobol’ I. M. Tochki, ravnomerno zapolnyayuschie mnogomernui kub. Points Uniformly Filling a Multidimensional Cube. Мoscow, Znanie, 1985, 32 р. (in Russian).
19. Antonov I. A., Saleev V. М. Ekonomichnui sposob vuchisleniya LP-posledovatel’nostei [An economical way to calculate LP sequences]. Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki [Journal of Computational Mathematics and Mathematical Physics], 1979, vol. 19, no. 1, рр. 243–245 (in Russian).
20. Yarmolik S. V., Yarmolik V. N. Kvazisluchainoe testirovanie vuchislitel’nuh system [Quasi-random testing of computing systems]. Informatika [Informatics], 2013, no. 3(39), рр. 65–81 (in Russian).
21. Savage C. A survey of combinatorial Gray code. SIAM Review, 1997, vol. 39, no. 4, рр. 605–629.
22. Boyd S. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Cambridge, University Printing House, 2018, 463 p.
23. Ferreira P., Jesus B., Vieira J., Pinho A. J. The rank of random binary matrices and distributed storage applications. IEEE Communication Letters, 2013, vol. 17, no. 1, рр. 151–154.
24. Goor A. J., Kukner H., Hamdioui S. Optimizing memory BIST Address Generator implementations. Proceedings of 2011 6th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Athens, Greece, 2011. Athens, 2011, рр. 572–576.
25. Du X., Mukherjee N., Cheng W. T., Reddy S. M. Full-speed field-programmable memory BIST architecture. Proceedings of IEEE International Test Conference, Austin, TX, USA, 2005. Austin, 2005, рр. 1173–1182.
26. Aswin A. M., Ganesh S. S. Implementation and validation of memory built in self-test (MBIST) –survey. International Journal of Mechanical Engineering and Technology (IJMET), 2019, vol. 10, no. 3, рр. 153–160.
27. Mrozek I., Yarmolik V. N. Iterative antirandom testing. Journal of Electronic Testing: Theory and Applications (JETTA), 2012, vol. 9, no. 3, рр. 251–266. 28.
28. Mrozek I., Yarmolik V. N. Antirandom test vectors for BIST in Hardware / Software systems. Fundamenta Informaticae, 2012, no. 119, рр. 1–23.
Review
For citations:
Yarmolik V.N., Shevchenko N.A. Generation of address sequences with a given switching activity. Informatics. 2020;17(1):47-62. (In Russ.) https://doi.org/10.37661/1816-0301-2020-17-1-47-62