Preview

Informatics

Advanced search

Algorithm for synthesis of the stable characteristic polynomials for dynamic systems under parametric variations

Abstract

The paper deals with the dynamic systems with perturbed parameters described by the families of the third order characteristic polynomials having coefficients within the given intervals of values. The system dynamics is represented in the form of the root locus portrait. The notion of the root locus field of the family is introduced that is the basis for the system stability condition formulation. Root locus portrait configuration peculiarities of the systems of the kind and graphic-analytical approach to their analysis and synthesis serve as the basis for the system characteristic equation parameters calculation algorithm ensuring its robust stability in case of the given system proven unstable. Algorithm is implemented in the graphic-analytical form. System stability investigation and synthesis, in case of necessity, of the new parameters values are performed on the basis of estimation of the family root locus dominating field location character in the roots plane.

About the Author

A. A. Nesenchuk
The United Institute ofInformatics Problems, National Academy of Sciences of Belarus
Belarus

Alla A. Nesenchuk - Cand. Sci. (Eng.), Leading Researcher.

Minsk



References

1. Dorf R., Bishop R. Modern Control Systems. New York, Prentice Hall, 2011, 1111 p.

2. Tempo R, Calafiori C., Dabbene F. Randomized Algorithms for Analysis and Control of Uncertain Systems with Applications. London, Springer-Verlag, 2013, 357 p.

3. Kucera V. Polynomial control: past, present, and future. International Journal of Robust and Nonlinear Control, 2007, vol. 17, no. 8, pp. 682-705.

4. Kharitonov V. L. Ob asimptoticheskoy ustojchivosti polozhenija ravnovesija semejstva sistem linejnykh differentsyal'nykh uravnenij [About the asymptotic stability of equilibrium for the system of the linear differential equations family]. Differentsyal'nyje uravnenija [Differential Equations], 1978, vol. XIV, no. 11, pp. 2086-2088 (in Russian).

5. Anderson B. On robust hurwitz polynomials. IEEE Transactions on Automatic Control, 1987, vol. 32, no. 10, pp. 909-913.

6. Polyak, B. T., Shcherbakov P. S. Robastnaja ustojchivost' i upravlenije. Robust Stability and Control. Moscow, Nauka, 2002, 303 p. (in Russian).

7. Polyak B. T., Khlebnikov M. V., Shcherbakov P. S. Upravlenije linejnymi sistemami pri vneshnich vozmushchenijach. Linear Systems Control in Conditions of External Disturbances. Moscow, Lenand, 2014, 560 p. (in Russian).

8. Rimsky G. V., Taborovets V. V. Avtomatizatsija issledovanij dinamicheskich system. Automation of the Dynamic Systems Investigations. Minsk, Nauka i technika, 1978, 336 p. (in Russian).

9. Nesenchuk A. A. Analiz i sintez robastnykh dinamicheskikh sistem na osnovie kornievogo podkhoda. Analysis and Synthesis of Robust Dynamic Systems on the Basis of the Root Locus Approach. Minsk, Ob"edinennyj institut problem informatiki Nacional'noj akademii nauk Belarusi, 2005, 234 p. (in Russian)

10. Nesenchuk A. A. Kornevoj metod sinteza ustojchivykh polinomov putiom nastrojki vsekh koefficientov [Root locus method for the stable polynomials synthesis over setting up all coefficients]. Avtomatika i telemekhanika [Automation and Remote Control], 2010, no. 8, pp. 13-24 (in Russian).

11. Nesenchuk А. А. Investigation of behavior and synthesis of interval dynamic systems' characteristic polynomials based on the root locus portrait parameter function. Proceedings of the 60th American Control Conference (ACC 2018). Milwaukee, USA, 2018, pp. 2041-2046.

12. Nesenchuk A. A. Investigation and synthesis of robust polynomials in uncertainty on the basis of the Root Locus Theory. Polynomials - Theory and Applications. In C. S. Ryoo (ed.). London, Intechopen, 2019, ch. 6, pр. 109-130.

13. Gaivoronsky S. V., Ezangina T. A., Hozhaev I. V., Nesenchuk A. A. Opredelenije vershinnykh polynomov dla analiza stepeni robastnoj ustojchinis'ti interval'noj sistemy [Definition of the vertex polynomials for analysis of the interval system robust stability degree]. Mechatronika, avtomatizatsyja, upravlenije [Mechatronics, Automation, Control], 2019, vol. 20, no. 5, pp. 266-273 (in Russian).

14. Nesenchuk А. А. Investigation and robust synthesis of polynomials under perturbations based on the root locus parameter distribution diagram. Shtuchnij intelekt [ArtificialIntelligence], 2019, no. 1, pp. 14-22.


Review

For citations:


Nesenchuk A.A. Algorithm for synthesis of the stable characteristic polynomials for dynamic systems under parametric variations. Informatics. 2019;16(4):51-62. (In Russ.)

Views: 1173


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)