1. Lindeberg, T. Scale Selection Properties of Generalized Scale-Space Interest Point Detectors / T. Lindeberg, Tony // Journal of Mathematical Imaging and Vision. - 2013. - Vol. 46, Iss. 2. - P. 177-210.
2. Lindeberg, T. Image matching using generalized scale-space interest points / T. Lindeberg // Journal of Mathematical Imaging and Vision. - 2015. - Vol. 52. -No. 1. - P. 3-36.
3. Lowe, D. Distinctive image features from scale-invariant keypoints / D. Lowe // IJCV. - 2004. - Vol. 60. - P. 91-110.
4. Herbert Bay. SURF: Speeded Up Robust Features / Herbert Bay, Andreas Ess, TinneTuytelaars, Luc Van Gool // Computer Vision and Image Understanding (CVIU). - 2008. - Vol. 110. -No. 3. - P. 346-359.
5. Mikolajczyk, K. Scale and affine invariant interest point detectors / K. Mikolajczyk, C. Schmid// IJCV. - 2004. - Vol. 60. - P. 63-86.
6. Rosenfeld, A. Digital Picture Processing / A. Rosenfeld, A. Kak. Academic Press, 1976.
7. Kitchen, L. Gray-level corner detection / L. Kitchen, A. Rosenfeld // Pattern Recognition Letters. - 1982. - Vol. 1. - P. 92-102.
8. Harris, C. A combined corner and edge detector / C. Harris, M. Stephens // Proc. of the Fourth Alvey Vision Conference. - 1988. - P. 147-151.
9. Lindeberg, T. Feature Tracking with Automatic Selection of Spatial Scales / L. Bretzner, T. Lindeberg // Computer Vision and Image Understanding. - 1998. -Vol.71. -No. 3. - P.385-392.
10. Lindeberg, T. Scale-space. In Wah, Benjamin (ed.). Encyclopedia of Computer Science and Engineering / T. Lindeberg // John Wiley and Sons. - 2008. - P.2495-2504.
11. Lindeberg, T. Detecting Salient Blob-Like Image Structures and Their Scales with a Scale-Space Primal Sketch: A Method for Focus-of-Attention / T. Lindeberg // International Journal of Computer Vision. - 1993. -Vol.11 -No. 3. - P.283-318.
12. Lindeberg, T. Scale-Space Theory in Computer Vision / T. Lindeberg. Springer, 1994.
13. Matas, J. Robust wide baseline stereo from maximally stable extremal regions / J. Matas, O. Chum, M. Urban, and T. Pajdla // Proc. of British Machine Vision Conference. - 2002. - P.384-396.
14. Van Herk, M. A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels / M. Van Herk// Pattern Recognition Letters. - 1992. - Vol. 13. - P. 517-521.
15. Gil, J. Computing 2-D min, median, and max / J. Gil, M. Werman// IEEE Trans. on PAMI. - 1993. - Vol. 15. - P. 504-507.
16. Coltuc, D. Fast computation of rank order statistics / D. Coltuc, P. Bolon,// Proc. Of EUSIPCO. - 2000. - P. 2425-2428.
17. Neubeck, A. Efficient non-maximum suppression / A. Neubeck, L. Van Gool// Proc. of ICPR. - 2006. - Vol. 3. - P. 850-855.
18. Forstner, W. A fast operator for detection and precise locations of distinct points, corners, and centres of circular features / W. Forstner, E. Gulch // Proc. of Intercommission Conf. on Fast Processing of Photogrammetric Data. - 1987. - P. 281-305.
19. Tuan Q. Pham. Non-maximum Suppression Using fewer than 2 Comparisons per Pixel / Tuan Q. Pham // Advanced Concepts for Intelligent Vision Systems(ACIVS). - 2010. - Vol. 12. - P. 438 -451.
20. Bastys, A. Iris Matching by Local Extremum Points of Multiscale Taylor Expansion / A. Bastys, J. Kranauskas, R. Masiulis // Springer-Verlag Berlin Heidelberg, 2009. ICB 2009, LNCS 5558. - P. 1070-1079.
21. Soille, P. Morphological Image Analysis: Principles and Applications / P. Soille. Springer, 2002.
22. Gonzales, R.C. Digital image processing / R.C. Gonzales, R.E. Woods.Boston, MA Addison-Wesley, 2001. - 823 p.