Preview

Informatics

Advanced search

Segment search for local extremums of images based on the analysis of brightness of adjacent homogeneous areas

Abstract

The problem of finding local extrema on halftone images is considered. Well-known block-search algorithms provide high speed, but they extract only strict (single-pixel) extremes, skipping extreme areas formed by non-strict extremes. Morphological search algorithms provide the selection of non-strict extremes, but have a high computational complexity. A mathematical model and an algorithm based on the brightness analysis of adjacent homogeneous regions are proposed to isolate strict and non-strict local extremes of images with low computational complexity. Their differences from well-known models are: consideration of homogeneous areas, which are formed by non-strict extremes and are local maxima or minima in relation to adjacent areas; elimination of iterative processing of non-extreme pixels; assigning the numbers to local extremes during their search. These differences allowed to increase the accuracy of local extremum extraction in comparison with block search and to reduce the computational complexity in comparison with morphological search. 

About the Authors

V. Yu. Tsviatkou
Belarusian State University of Informatics and Radioelectronics
Belarus
Dr. Sci. (Eng.), Assoc. Prof., Head of the Department of Infocommunication Technologies


Anh Tuan Nguyen
Belarusian State University of Informatics and Radioelectronics
Viet Nam
Postgraduate Student of Department of Infocommunication Technologies


References

1. Lindeberg, T. Scale Selection Properties of Generalized Scale-Space Interest Point Detectors / T. Lindeberg, Tony // Journal of Mathematical Imaging and Vision. – 2013. – Vol. 46, Iss. 2. – P. 177–210.

2. Lindeberg, T. Image matching using generalized scale-space interest points / T. Lindeberg // Journal of Mathematical Imaging and Vision. – 2015. – Vol. 52. –No. 1. – P. 3–36.

3. Lowe, D. Distinctive image features from scale-invariant keypoints / D. Lowe // IJCV. – 2004. – Vol. 60. – P. 91–110.

4. Herbert Bay. SURF: Speeded Up Robust Features / Herbert Bay, Andreas Ess, TinneTuytelaars, Luc Van Gool // Computer Vision and Image Understanding (CVIU). – 2008. – Vol. 110. –No. 3. – P. 346–359.

5. Mikolajczyk, K. Scale and affine invariant interest point detectors / K. Mikolajczyk, C. Schmid// IJCV. – 2004. – Vol. 60. – P. 63–86.

6. Rosenfeld, A. Digital Picture Processing / A. Rosenfeld, A. Kak. Academic Press, 1976.

7. Kitchen, L. Gray-level corner detection / L. Kitchen, A. Rosenfeld // Pattern Recognition Letters. – 1982. – Vol. 1. – P. 92–102.

8. Harris, C. A combined corner and edge detector / C. Harris, M. Stephens // Proc. of the Fourth Alvey Vision Conference. – 1988. – P. 147–151.

9. Lindeberg, T. Feature Tracking with Automatic Selection of Spatial Scales / L. Bretzner, T. Lindeberg // Computer Vision and Image Understanding. – 1998. –Vol.71. –No. 3. – P.385–392.

10. Lindeberg, T. Scale-space. In Wah, Benjamin (ed.). Encyclopedia of Computer Science and Engineering / T. Lindeberg // John Wiley and Sons. – 2008. – P.2495–2504.

11. Lindeberg, T. Detecting Salient Blob-Like Image Structures and Their Scales with a Scale-Space Primal Sketch: A Method for Focus-of-Attention / T. Lindeberg // International Journal of Computer Vision. – 1993. –Vol.11 –No. 3. – P.283–318.

12. Lindeberg, T. Scale-Space Theory in Computer Vision / T. Lindeberg. Springer, 1994.

13. Matas, J. Robust wide baseline stereo from maximally stable extremal regions / J. Matas, O. Chum, M. Urban, and T. Pajdla // Proc. of British Machine Vision Conference. – 2002. – P.384–396.

14. Van Herk, M. A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels / M. Van Herk// Pattern Recognition Letters. – 1992. – Vol. 13. – P. 517–521.

15. Gil, J. Computing 2-D min, median, and max / J. Gil, M. Werman// IEEE Trans. on PAMI. – 1993. – Vol. 15. – P. 504–507.

16. Coltuc, D. Fast computation of rank order statistics / D. Coltuc, P. Bolon,// Proc. Of EUSIPCO. – 2000. – P. 2425–2428.

17. Neubeck, A. Efficient non-maximum suppression / A. Neubeck, L. Van Gool// Proc. of ICPR. – 2006. – Vol. 3. – P. 850–855.

18. Forstner, W. A fast operator for detection and precise locations of distinct points, corners, and centres of circular features / W. Forstner, E. Gulch // Proc. of Intercommission Conf. on Fast Processing of Photogrammetric Data. – 1987. – P. 281–305.

19. Tuan Q. Pham. Non-maximum Suppression Using fewer than 2 Comparisons per Pixel / Tuan Q. Pham // Advanced Concepts for Intelligent Vision Systems(ACIVS). – 2010. – Vol. 12. – P. 438 –451.

20. Bastys, A. Iris Matching by Local Extremum Points of Multiscale Taylor Expansion / A. Bastys, J. Kranauskas, R. Masiulis // Springer-Verlag Berlin Heidelberg, 2009. ICB 2009, LNCS 5558. – P. 1070–1079.

21. Soille, P. Morphological Image Analysis: Principles and Applications / P. Soille. Springer, 2002.

22. Gonzales, R.C. Digital image processing / R.C. Gonzales, R.E. Woods.Boston, MA Addison-Wesley, 2001. – 823 p.


Review

For citations:


Tsviatkou V.Yu., Nguyen A. Segment search for local extremums of images based on the analysis of brightness of adjacent homogeneous areas. Informatics. 2019;16(3):23-36. (In Russ.)

Views: 668


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)