1. Litjens G., Kooi T., Bejnordi B., Setio A., Ciompi F., Ghafoorian M.: A survey on deep learning in medical image analysis. Medical Image Analysis 42, 60-88 (2017).
2. Ker J., Wang L., Rao J., Lim T.: Deep Learning Applications in Medical Image Analysis. IEEE Access 6, 9375-9389 (2018).
3. Papernot N., McDaniel P., Goodfellow I., Jha S., Z. Berkay Celik, Swami A.: Practical Black-Box Attacks agains Machine Learning. arXiv preprint arXiv:1602.02697v4 (2017).
4. Szegedy C., Wojciech Z., Sutskever I., Bruna J., Dumitru E., Goodfellow I., Fergus R.: Intri-guing properties of neural networks. International Conference on Learning Representations (ICLR) 2014, pp. 1-10. Springer, Banff (2014).
5. Goodfellow I., Shlens J., Szegedy C.: Explaining and harnessing adversarial examples. arXiv pre-print arXiv:1412.6572v3 (2015).
6. Madry A., Makelov A., Schmidt L., Tsipras D., Vladu A.: Towards Deep Learning Models Re-sistant to Adversarial Attacks. arXiv preprint arXiv:1706.06083v3 (2017).
7. Xu W., Evans D., Qi Y.: Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. arXiv preprint arXiv:1704.01155v2 (2017).
8. Wang H., Yu Chun-Nam: A Direct Approach to Robust Deep Learning Using Adversarial Net-works. arXiv preprint arXiv:1905.09591v1 (2019).
9. Papernot N., McDaniel P., Fredrikson M., Jha S., Z. Berkay Celik, Swami A.: The Limitations of Deep Learning in Adversarial Settings. arXiv preprint arXiv: 1511.07528v1 (2015).
10. Sun Ke, Zhu Z., Lin Z.: Towards Understanding Adversarial Examples Systematically: Exploring Data Size, Task and Model Factors. arXiv preprint arXiv: 1902.11019v1 (2019).
11. Han C., Murao K., Satoh S., Nakayama H.: GAN-based Medical Image Augmentation. arXiv preprint arXiv: 1904.00838v1 (2019).
12. Kazemifar S., McGuire S., Timmerman R., Wardak Z., Nguyen D., Park Y., Jiang S., Owrangi A.: MRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic CT images gen-erated using a deep learning approach. arXiv preprint arXiv: 1904.05789 (2019).
13. Werpachowski R., György A., Szepesvári. C: Detecting Overfitting via Adversarial Examples. arXiv preprint arXiv: 1903.02380v1 (2019).
14. Akhtar N., Mian A.S.: Threat of Adversarial Attacks on Deep Learning in Computer Vision. IEEE Access 6, 14410-14430 (2018).
15. Recht B., Roelofs R., Schmidt L., Shankar V.: Do CIFAR-10 Classifiers Generalize to CIFAR-10? arXiv preprint arXiv:1806.00451 (2018).
16. Ozdag M.: Adversarial Attacks and Defenses Against Deep Neural Networks: A Survey. Procedia Computer Science 140, 152-161 (2018).
17. Veta M., Heng Y.J., Stathonikos N. et. al.: Predicting breast tumor proliferation from wholeslide images. Medical Image Analysis 54, 111-121 (2019).
18. Wiyatno R., Xu A.: Maximal Jacobian-based Saliency Map Attack. arXiv preprint arXiv:1808.07945v1 (2018).
19. Ericson N. B., Yao Z., Mahoney W.: JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks. arXiv preprint arXiv: 1904.03750 (2019)