Preview

Informatics

Advanced search

Mathematical modeling of thermal conditions of non-hermetic spacecrafts

Abstract

A description of the software complex for modeling the thermal conditions of non-hermetic spacecrafts in circular and elliptical orbits is given. The software complex structure, mathematical models of thermal processes in the presence of thermal control system are presented. For thermal processes calculation the method of lumped parameters is used. The results of thermal stabilization for model of orbital optical device are given. The software complex can be used in the design and development of thermal control systems of nonhermetic spacecraft, and in the determination of the causes of emergency situations in these systems in orbit as well.

About the Authors

S. V. Lemeshevsky
Institute of Mathematics, National Academy of Sciences of Belarus
Belarus

Sergey V. Lemeshevsky - Cand. Sci. (Phys.-Math.), Director.

Minsk



M. M. Chuiko
Institute of Mathematics, National Academy of Sciences of Belarus
Belarus

Mikhail M.  Chuiko - Cand. Sci. (Phys.-Math.), Leading Researcher of the Department of Computational Mathematics.

Minsk



A. I. Shnip
A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus
Belarus

Aleksandr I. Shnip - Cand. Sci. (Phys.-Math.), Head of the Drying Thermal Processes Laboratory.

Minsk



G. L. Martsynkevich
Institute of Mathematics, National Academy of Sciences of Belarus
Belarus

Grigorii L. Martsynkevich - Cand. Sci. (Phys.-Math.), Researcher of the Department of Computational Mathematics.

Minsk



V. V. Lepin
Institute of Mathematics, National Academy of Sciences of Belarus
Belarus

Victor V. Lepin - Cand. Sci. (Phys.-Math.), Scientific Secretary.

Minsk



U. A. Irkhin
Institute of Mathematics, National Academy of Sciences of Belarus
Belarus

Uladzimir A. Irkhin, Junior Researcher of the Department of Information Technologies.

Minsk



References

1. Avduevsky V. S., Galicejskij V. M., Glebov G. A., Danilov Ju. I., Drejcer G. A., ..., Solncev V. P. Osnovy teploperedachi v aviacionnoj i raketno-kosmicheskoj tehnike. Fundamentals of Heat Transfer in Aviation and Rocket and Space Technology. Moscow, Mashinostroenie, 1992, 528 p. (in Russian).

2. Zaletaev V. M., Kapinos Yu. V., Surguchev O. V. Raschet teploobmena kosmicheskogo apparata. Heat Transfer Calculation of Spacecraft. Moscow, Mashinostroenie, 1979, 208 p. (in Russian).

3. Kobranov G. P., Tsvetkov A. P., Belov A. I., Suhnev V. A. Vneshnij teploobmen kosmicheskih objectov. External Heat Exchange of Space Objects. Moscow, Mashinostroenie, 1977, 104 p. (in Russian).

4. Modelirovanie teplovyh rezhimov kosmicheskogo apparata i okruzhayushchey ego sredy. Spacecraft and its Environment Thermal Conditions Simulation. G. I. Petrov (ed.). Moscow, Mashinostroenie, 1971, 380 p. (in Russian).

5. Favorsky О. N., Kadaner Ya. S. Voprosi teploobmena v kosmose. Heat Transfer in Space. Moscow, Vyschaya shkola, 1967, 248 p. (in Russian)

6. Gushchin V. N. Osnovy ustrojstva kosmicheskih apparatov. Fundamentals of Spacecraft Design. Moscow, Mashinostroenie, 2003, 272 p. (in Russian).

7. Zaletaev S. V., Kopyatkevich R. M. Programnyj kompleks teplovogo proektirovanija i analiza teplovyh rezhimov kosmicheskih apparatov [Software package of a thermal design and an analysis of spacecraft thermal conditions]. Kosmonavtika i raketostroenie [Space and Rocket Science], 2014, no. 4, pp. 84-91 (in Russian).

8. Shnip A. I., Marach S. O., Brin A. A., Ivankin P. S. Teplovoe proektirovanie system termoregulirovanija optiko-elektronnoj apparatury kosmicheskih apparatov na osnove matematicheskogo modelirovanija [Design of thermal control system for spacecraft optoelectronic equipment]. Teplo- i massoperenos-2011: doklady Minskogo Mezhdunarodnogo foruma po teplomassoobmenu [Heat and Mass Transfer-2011: Reports of the Minsk International Forum on Heat and Mass Transfer]. Minsk, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, 2011, pp. 86-90 (in Russian).

9. Gilmore D. G. Spacecraft Thermal Control Handbook. Vol. 1: Fundamental Technologies. The Aerospace Press, 2002, 854 p.

10. Karam R. D. Satellite Thermal Control for Systems Engineers. Gaithersburg, Maryland, 1998, 274 p.

11. Zhang X., Kim Y. J. Interactive collision detection for deformable models using streaming AABBs. IEEE Transactions on Visualization and Computer Graphics, 2007, vol. 13, no. 2, pp. 318-329.

12. Van den Bergen, G. Efficient collision detection of complex deformable models using AABB trees. Journal of Graphics Tools, 1997, vol. 2, no. 4, pp.1-13.

13. Siegel R., Howell J. Thermal Radiation Heat Transfer. New York, McGraw-Hill Book Co., 1972, 803 p.

14. Semena N. P. Osobennosti ispol'zovanija termojelektricheskih preobrazovatelej v sistemah termoregulirovanija kosmicheskogo primenenija [The features of application of thermoelectric converters in spacecraft systems of temperature control]. Teplofizika i ajeromehanika [Thermophysics and Aeromechanics], 2013, vol. 20, no. 2, pp. 213-224 (in Russian).


Review

For citations:


Lemeshevsky S.V., Chuiko M.M., Shnip A.I., Martsynkevich G.L., Lepin V.V., Irkhin U.A. Mathematical modeling of thermal conditions of non-hermetic spacecrafts. Informatics. 2019;16(4):25-39. (In Russ.)

Views: 818


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)