РЕШЕНИЕ БОЛЬШИХ СИСТЕМ БУЛЕВЫХ УРАВНЕНИЙ
Аннотация
Список литературы
1. Теория дискретных управляющих устройств / Под ред. А.Д. Закревского и И.В. Прангишвили. – М.: Наука, 1982.
2. Лазарев В.Г., Пийль Е.И. Синтез управляющих автоматов. – М.: Энергия, 1970.
3. Закревский А.Д. Алгоритмы синтеза дискретных автоматов. – М.: Наука, 1971.
4. Основы технической диагностики / Под ред. П.П. Пархоменко. – М.: Энергия, 1976.
5. Чень Ч., Ли Р. Математическая логика и автоматическое доказательство теорем. М.: Наука, 1983.
6. Математические и компьютерные основы криптологии / Ю.С. Харин, В.И. Берник, Г.В. Матвеев, С.В. Агиевич. – Мн.: ООО «Новое знание», 2003.
7. Алгоритмы решения логико-комбинаторных задач: Сб. науч. тр. / Под ред. А.Д. Закревского. – Мн.: Ин-т техн. кибернетики АН БССР, 1975-1980. – Вып. 1-6.
8. Закревский А.Д. Некоторые комбинаторные задачи искусственного интеллекта // Семиотика и информатика. М.: ВИНИТИ, 1980. – Вып. 15. С. 3-17.
9. Закревский А.Д. Комбинаторика логического проектирования // Автоматика и вычислительная техника. 1990. – № 2. – С. 68-79.
10. Закревский А.Д. Комбинаторные задачи над логическими матрицами в логическом проекти-ровании и искусственном интеллекте // Успехи современной радиоэлектроники. 1998. № 2. С. 59-67.
11. Поттосин Ю.В. Задачи теории графов в логическом проектировании // Логическое проектирование. – Мн.: Ин-т техн. кибернетики НАН Беларуси, 2001. – Вып. 6. – С. 106-130.
12. Распознавание образов / Под ред. П. Колерса и М. Идена. – М.: Мир, 1970.
13. Закревский А.Д., Карелина А.В., Печерский Ю.Н. Всесоюзная школа-семинар по логико-комбинаторным методам в распознавании образов // Информационные материалы: Кибернетика. – М.: АН СССР, 1978. – № 4(104). – С. 16-18.
14. Zakrevskij A.D. A common logical approach to data mining and pattern recognition // Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. – Dordrecht: Kluwer Academic Publishers, 2004. – P. 1-42.
15. Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика. – М.: Мир, 1980.
16. Закревский А.Д. О приближенных методах решения логических задач // Вопросы синтеза цифровых автоматов. – М.: Наука, 1967. – С. 5-13.
17. Эйнгорин М.Я. О системах уравнений алгебры логики и синтезе дискретных управляющих схем с обратными связями // Известия вузов. Радиофизика. – 1958. – Т. 1. – № 2. – С. 169-184.
18. Rudeanu S. Boolean functions and equations. – Amsterdam-London-New York: North-Holland and American Elsevier, 1974.
19. Закревский А.Д. Логические уравнения. – Мн.: Наука и техника, 1975; М.: УРСС, 2003. – 2-е изд.
20. Уткин А.А. Решение логических уравнений // Автоматизация логического проектирования. – Мн.: Ин-т техн. кибернетики АН БССР, 1982. – С. 41-58.
21. Bochmann D., Zakrevskij A.D. Posthoff Ch. Boolesche Gleichungen. – Berlin: VEB Verlag Technik, 1984.
22. Закревский А.Д. Решение логических уравнений // Логическое проектирование. – Мн.: Ин-т техн. кибернетики НАН Беларуси, 2001. – Вып. 6. – С. 51-68.
23. Закревский А.Д. Логические уравнения с приложениями в автоматизированном проектировании и управлении // Автоматика и телемеханика, 2004. – № 4. – С. 173-185.
24. Закревский А.Д. Логический синтез каскадных схем. – М.: Наука, 1981. – 416 с.
25. Закревский А.Д. ПЛМ и матричные логические уравнения // Automatentheorie und Ihre Anwendung. Seminarbericht, Sekt. Math. der Humboldt-Universitet. – Berlin, 1984 Januar. – S. 26-34.
26. Бибило П.Н. Декомпозиция булевых функций на основе решения логических уравнений // Известия Академии наук. Теория и системы управления. – 2002. – № 4. – I. – С. 53-64; 2002. – № 5. – II. – С. 57-63; 2003. – № 6. – III. – С. 88-97.
27. Zakrevskij A.D. Pattern recognition as solving logical equations. – Special Issue 1999 – SSIT'99 (AMSE). – P. 125-136.
28. Лукасевич Я. Аристотелевская силлогистика с точки зрения современной формальной логики. – М.: ИЛ, 1959.
29. Закревский А.Д. К формализации полисиллогистики // Логический вывод. – М.: Наука, 1979. – С. 300-309.
30. Закревский А.Д. Матричный аппарат логического вывода в конечных предикатах // Философские основы неклассических логик: Тр. науч.-иссл. семинара по логике. – М.: Ин-т философии АН СССР, 1990. – С. 70-80.
31. Закревский А.Д. К решению систем логических уравнений // Принципы построения сетей и систем управления. – М.: Наука, 1964. – С. 48-55.
32. Закревский А.Д. Проверка тождеств в алгебре логики // Логический язык для представления алгоритмов синтеза релейных устройств. – М.: Наука, 1966. – С. 159-163.
33. Zakrevskii A.D., Kalmykova A.Yu. The solution of systems of logical equations // LYaPAS: A programming language for logic and coding algorithms – New-York and London: Academic Press, 1969. – P. 193-206.
34. Нильсон Н. Искусственный интеллект. Методы поиска решений. – М.: Мир, 1973.
35. Zakrevskij A., Zakrevski L. Solving systems of logical equations using search tree minimization technique // Proceedings of the PDPTA’02 International Conference, June 24-27, 2002, Las Vegas, USA. – P. 1145-1150.
36. Закревский А.Д., Василькова И.В. Решение больших систем логических уравнений: метод минимизации дерева поиска // Вестник Томского государственного университета. Приложение № 1 (II), сентябрь 2002. – С. 260-265.
37. Zakrevskij A., Vasilkova I. Reducing search trees to accelerate solving large systems of Boolean equations // Boolean Problems. 5th International Workshop, Sept. 19-20, 2002, Freiberg (Sachsen). – P. 71-76.
38. Закревский А.Д., Василькова И.В. Минимизация дерева поиска корней больших систем логических уравнений // Автоматика и вычислительная техника. – 2003. – № 1. – C. 3-11.
39. Cherry C., Vaswani P.K. A new type of computer in propositional logic, with greatly reduced scanning procedures // Information and control. – 1961. – V. 4. – № 3. – P. 155-168.
40. Zakrevskij A. Reduction algorithms for solving large systems of logical equations // Computer Science Journal of Moldova. – 2000. – V. 8. – № 1. – P. 3-15.
41. Zakrevskij A., Vasilkova I. Reducing large systems of Boolean equations // 4th International Workshop on Boolean Problems, September 21-22, 2000. – Freiberg, Germany. – P. 21-28.
42. Закревский А.Д., Василькова И.В. Криптоанализ машины Hagelin – метод решения системы логических уравнений // Комплексная защита информации. – Мн.: Ин-т техн. кибернетики АН Беларуси, 1999. – Вып. 2. – С. 129-138.
43. Закревский А.Д. Метод «отраженных волн» решения логических уравнений // Прикладные аспекты теории автоматов. Тр. III Междунар. семинара. Т. 1. – Варна: БАН, 1975. – С. 81-84.
44. Baumann M., Rohde R., Barthel R. Cryptoanalysis of the Hagelin M-209 Machine // 3rd International Workshop on Boolean Problems, Sept. 17-18, 1998. – Freiberg (Sachsen). – P. 109-116.
45. Закревский А.Д. Решение систем логических уравнений методом локальной редукции // Доклады НАН Беларуси, 1999. – Т. 43. – № 5. – С. 5-8.
46. Закревский А.Д., Василькова И.В. Локальная редукция больших систем логических уравнений // Логическое проектирование. – Мн: Ин-т техн. кибернетики АН Беларуси, 1999. – Вып.4.– С. 91-101.
47. Закревский А.Д. Редукция больших систем логических уравнений: метод силлогизмов // Автоматика и вычислительная техника. – 2000. – № 5. – С. 32-39.
48. Закревский А.Д., Торопов Н.Р. Полиномиальная реализация частичных булевых функций и систем. – Мн.: Ин-т техн. кибернетики НАН Беларуси, 2001. – 200 с.
49. Zakrevskij A.D. Looking for shortest solutions of systems of linear logical equations: theory and applications in logic design // 2 Workshop «Boolesche Probleme», 19 – 20 Septem-ber 1996. Freiberg (Sachsen). – P. 63-69.
50. Закревский А.Д., Торопов Н.Р. Поиск кратчайшего решения системы линейных логических уравнений // Автоматизация проектирования дискретных систем: Мат. Второй междунар. конф. (CAD DD’97). – Мн.: Ин-т техн. кибернетики НАН Беларуси.– Т. 2. – С. 16-23.
51. Zakrevskij A.D., Zakrevski L. Optimizing solutions in a linear Boolean space – a decomposition method // Proc. of STI '2003, Orlando, Florida, USA, July 2003. – P. 276-280.
52. Закревский А.Д. Оптимизация решений в линейном булевом пространстве – методы декомпозиции // Автоматика и вычислительная техника. – 2003. – № 5. – C. 28-36.
53. Закревский А.Д. Комбинаторные методы оптимизации решений систем линейных логических уравнений // Вестник Томского государственного университета. Приложение. № 6. – Сентябрь 2003. – С. 4-8.
54. Закревский А.Д. Эффективные методы нахождения кратчайших решений систем линейных логических уравнений // Проблемы управления. – 2003. – № 4. – C. 16-22.
55. Zakrevskij A.D. Randomization of a parallel algorithm for solving undefined systems of linear logical equations // Proceedings of the International Workshop on Discrete-Event System Design – DESDes’04, 2004. – University of Zielona Gora Press, Poland. – P. 97-102.
56. Закревский А.Д., Василькова И.В. Прогнозирование затрат времени на реализацию комбинаторных алгоритмов // Методы логического проектирования. – Мн.: ОИПИ НАН Беларуси, 2003. – Вып. 2. – С. 26-32.
57. Закревский А.Д. Метод решения несовместных систем линейных логических уравнений // Вестник Томского государственного университета. Приложение. № 9(1). Сентябрь 2004. – С. 13-18.
58. Zakrevskij A.D. Solving inconsistent systems of linear logical equations // 6th International Workshop on Boolean Problems, September 23-24, 2004. Freiberg (Sachsen). – P. 183-190.
Рецензия
Для цитирования:
Закревский А.Д. РЕШЕНИЕ БОЛЬШИХ СИСТЕМ БУЛЕВЫХ УРАВНЕНИЙ. Информатика. 2004;(4(04)):42-53.