1. Ablameiko S.V., Lagunovskii D.M. Obrabotka izobrazhenii: tekhnologiya, metody, primenenie. - Mn.: In-t tekhn. kibernetiki NAN Belarusi, 2000. - 304 s.
2. Cheng-Yuan L., Hsing-Chang Y. Hand printed Character Recognition Based on Spatial Topology Distance Measurement // IEEE Transaction on Pattern Analysis and Machine Intelli-gence. -V. 18 (9). 1996.
3. Golovko V.A. Neirointellekt: teoriya i primenenie. V 2 kn. Kn. 1: Organizatsiya i obuchenie neironnykh setei s pryamymi i obratnymi svyazyami. - Brest: Izd-vo BPI, 1999. - 264 s.; Kn. 2: Samoorganizatsiya, otkazoustoichivost' i primenenie neironnykh setei. - Brest: Izd-vo BPI, 1999. - 228s.
4. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position // Biol. Cybern. - V. 36. - 1980. - P. 193-202.
5. Fukushima K., Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position // Pattern Recognition. - V. 15. - 1982. - P. 455-469.
6. Fukushima K., Miyake S., Ito T. Neocognitron: A neural network model for a mechanism of visual pattern recognition // IEEE Trans. Syst., Man, Cybern. - V. SMC-13. - 1983. - P. 826-834.
7. Fukushima K., Wake N. Handwritten alphanumeric character recognition by the Neocognitron // IEEE Trans. on Neural Networks. - V. 2. - № 3. - 1991. - P. 355-365.
8. Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architec-ture in cat’s visual cortex // J. Physiol (London). - V. 160. - Jan. 1962. - P. 106-154.
9. Hubel D.H., Wiesel T.N. Receptive fields and functional architecture in two nonstriate visual area (18 and 19) of the cat // J. Neurophysiol. - V. 28. - 1965. - P. 229-289.
10. Sadykhov R., Vatkin M. New training algorithm of neural network «neocognitron» for recognition of hand-written symbols // Proc. of 6 International sonf. «Pattern recognition and information processing». V. 1. - Minsk (Belarus), May 18-20, 2001. - P. 203-212.
11. Sadykhov R.Kh., Klimovich A.N., Vatkin M. The models of neural networks for videoimage processing in industrial applications // NATO advanced study institute on neural networks for instrumentation, measurment, and related industrial applications. - Crema, Italy, 2001. - P. 78-84.
12. Sadykhov R.Kh., Vatkin M.E. Algoritm obrabotki polutonovykh izobrazhenii inte-gral'nykh mikroskhem na baze neironnoi seti «neokognitron» // Tsifrovaya obrabotka izobrazhenii. - Mn.: In-t tekhn. kibernetiki NAN Belarusi, 2001. - S. 68-75.
13. Vatkin M.E. Optimizatsiya struktury i algoritmov neironnoi seti «neokognitron» // Informatika. - 2004. - № 1. - S. 61-71.
14. Osovskii S. Neironnye seti dlya obrabotki informatsii. - M.: Finansy i statistika, 2004. - 344 s.
15. Vatkin M.E. Raspoznavanie rukopisnykh simvolov na osnove modifitsirovannoi SOM neironnoi seti // Mat. I Mezhdunar. konf. - Mn.: Izd-vo BGU, 2002. - Ch. 2. - C. 201-206.
16. Zagoruiko N.G., Elkina V.N., Lbov G.S. Algoritmy obnaruzheniya empiricheskikh zakonomernostei. - Novosibirsk: Nauka, 1985. - 110 s.
17. Prikladnaya statistika: klassifikatsiya i snizhenie razmernosti / S.A. Aivazyan, V.M. Bukhshtaber, I.S. Enyukov, L.D. Meshalkin. - M.: Finansy i statistika, 1989.