1. Everitt B.S. Graphical techniques for multivariate data. - London: Heinemann educational books, 1978.
2. Manly B.F.J. Multivariate statistical methods: A primer. - London: Chapman and Hall, 1994.
3. Phillips S. The effect of representation on error surface // Fourth Australian conference on neural networks (ACNN’93). - Australia: University of Sydney, 1993. - P. 86-89.
4. Hush D.R., Horne B., Salas J. M. Error surfaces for multi-layer perceptrons // IEEE Transactions on systems, man, and cybernetics. - V. 22. - № 5. - 1992. - P. 1152-1161.
5. Hamey L.G.C. The structure of neural network error surfaces // Proc. Sixth Australian сonference on neural networks. - University of Sydney, 1995. - P.197-200.
6. Androulakis G.S., Magoulas G.D., Vrahatis M. N. Geometry of learning: Visualizing the performance of neural network supervised training methods // Nonlinear analysis, theory, methods & applications. - V. 30. - № 7. - 1997. - P. 4359-4544.
7. Jolliffe T. Principal component analysis. - New-York: Springer-Verlag, 1986.
8. Wejchert J. and Tesauro G. Neural network visualization // Advances in neural information processing systems. - V. 2. - 1990. - P. 465-472.
9. Nilsson N.J. Learning machines. - New-York: McGraw-Hill, 1965.
10. Hinton G.E., McClelland J.L. and Rumelhart D.E. Distributed representations // Parallel distributed processing. - V.1. - Chapter 3. - 1986. - P. 77-109.
11. UCI Machine learning repository // http://www.ics.uci.edu/~mlearn/MLRepository.html
12. UCI Knowledge discovery in databases // http://kdd.ics.uci.edu
13. Delve: Data for Evaluating Learning in Valid Experiments // http://www.cs.toronto.edu/~delve
14. Bilkent university function approximation repository // http://funapp.cs.bilkent.edu.tr/funapp
15. CEDAR: Database of handwritten cities, states, ZIP codes, digits, and alphabetic characters // http://www.cedar.buffalo.edu/Databases
16. Otago speech corpus // http://divcom.otago.ac.nz/infosci/kel/software/RICBIS/hyspeech_main.html
17. Lisboa P.J.G., Perantonis S.J. Complete solution of the local minima in the XOR problem // Network. - V. 2. -1991. - P. 119-124.
18. Hamney L.G.C. XOR has no local minima: a case study in neural network error surface analysis // Neural Networks. - V. 11 - № 4. - 1998. - P. 669-682.
19. Sprinkhuizen-Kuyper I.G., Boers E.J.W. The error surface of the 2-2-1 XOR network: the finite stationary points // Neural Networks. - V. 11 - № 4. - 1998. - P. 683-690.
20. Auer P., Herbster M. and Warmuth M.K. Exponentially many local minima for single neurons // Technical Report UCSC-CRL-96-1. - Univ. of Calif. computer research lab., 1996.