ПОСТРОЕНИЕ НЕЧЕТКОЙ НЕЙРОСЕТЕВОЙ МОДЕЛИ ДЛЯ РЕШЕНИЯ ЗАДАЧ КЛАССИФИКАЦИИ
Аннотация
Рассматривается процесс построения нечеткой нейросетевой классифицирующей модели (ННМ) на основе имеющихся числовых значений признаков. Показано, что интегрирование нейронных сетей и нечетких систем позволяет создавать гибридные модели, которые способны обучаться на данных посредством минимизации соответствующей функции ошибки классификации и одновременно представлять извлекаемые из данных знания в виде набора лингвистических классифицирующих правил. В связи с необходимостью построения ННМ, обладающей достаточной степенью интерпретируемости при сохранении точности классификации, предлагается использовать трехэтапный подход к генерированию набора нечетких классифицирующих правил, которые явным образом представляют знания, содержащиеся в данных.
Для цитирования:
Новоселова Н.А. ПОСТРОЕНИЕ НЕЧЕТКОЙ НЕЙРОСЕТЕВОЙ МОДЕЛИ ДЛЯ РЕШЕНИЯ ЗАДАЧ КЛАССИФИКАЦИИ. Информатика. 2006;(3(11)):5-14.