1. Boysen, N. New bounds and algorthms for the Transshipment Yard Scheduling Problem /N. Boysen, F. Jaehn, E. Pesch // Journal of Scheduling. - 2012. - Vol. 15, I. 4. - P. 499-511.
2. Boysen, N. Scheduling freight trains in rail-rail transshipment yards / N. Boysen, F. Jaehn, E. Pesch // Transportation Science. - 2011. - Vol. 45, I. 2. - P. 199-211.
3. Cordeau, J.F. A survey of optimization models for train routing and scheduling /J.F. Cordeau, P. Toth, D. Vigo // Transportation Science. - 1998. - Vol. 32. - P. 380-404.
4. Macharis, C. Opportunities for OR in intermodal freight transport research: A review /C. Macharis, Y.M. Bontekoning // European Journal of Operational Research. - 2004. - Vol. 153. -P. 400-416.
5. Bontekoning,Y.M. Is a new applied transportation research field emerging? A review of intermodal rail-truck freight transport literature / Y.M. Bontekoning, C. Macharis, J.J. Trip // Transportation Research Part A: Policy and Practice. - 2004. - Vol. 38. - P. 1-24.
6. Crainic, T.G. Intermodal transport / T.G. Crainic, K.H. Kim // In Transportation, Handbooks in Operations Research and Management Science 14, eds.: C. Barnhart, G. Laporte. - North-Holland, 2007. - P. 467-538.
7. Hoogeveen, J.A. Stronger Lagrangian bounds by use of slack variables: applications to machine scheduling problems / J.A. Hoogeveen, S.L. van de Velde // Mathematical Programming. - 1995. - Vol. 70. - P. 173-190.
8. Fisher, M.L. A dual algorithm for the one-machine scheduling problem / M.L. Fisher // Mathematical Programming. - 1976. - Vol. 11. - P. 229-251.
9. Van de Velde, S.L. Dual decomposition of a single-machine scheduling problem /S.L. van de Velde // Mathematical Programming . - 1995. - Vol. 69. - P. 413-428.
10. Fischetti, M. An Additive Bounding Procedure for Combinatorial Optimization Problems /M. Fischetti, P. Toth // Operations Research. - 1989. - Vol. 37, № 2. - P. 319-328.