1. Воеводин, В.В. Параллельные вычисления / В.В. Воеводин, Вл.В. Воеводин. - СПб.: БХВ-Петербург, 2002. - 608 с.
2. Воеводин В.В. Вычислительная математика и структура алгоритмов / В.В. Воеводин // МГУ [Электронный ресурс] - 2006. - Режим доступа: http://parallel.ru/info/parallel/voevodin. - Дата доступа: 26.12.2007.
3. Darte, A. Mathematical tools for loop transformations: from systems of uniform recurrence equations to the polytope model / A. Darte // Algorithms for Parallel Processing, IMA Volumes in Mathematics and its Applications. - 1999. - Vol. 105. - P. 147-183.
4. Feautrier, P. Some efficient solutions to the affine scheduling problem. Part 2 / P. Feautrier // Int. J. of Parallel Programming. - 1992. - Vol. 21, № 6. - P 389-420.
5. Lim, A.W. Maximizing parallelism and minimizing synchronization with affine partitions / A.W. Lim, M.S. Lam // Parallel Computing. - 1998. - Vol. 24, № 3, 4. - P. 445-475.
6. Adutskevich, E.V. Affine transformations of loop nests for parallel execution and distribution of data over processors / E.V. Adutskevich, S.V. Bakhanovich, N.A. Likhoded. - Минск, 2005. - 10 с. - (Препринт / НАН Беларуси, Ин-т математики; № 3 (574)).
7. (Pen)-Ultimate Tiling? / P. Boulet [еt al.] // Integration, The VLSI J. - 1994. - Vol. 17. - P. 33-51.
8. Hodzic, E. On-Time Optimal Supernode Shape / E. Hodzic, W. Shang // IEEE Transactions on Parallel and Distributed Systems. - 2002. - Vol. 13, № 12. - P. 1220-1223.
9. Xue, J. Time-minimal tiling when rise is larger than zero / J. Xue, W. Cai // Parallel Computing. - 2002. - Vol. 28, № 5. - P. 915-939.
10. Баханович, С.В. Отображение алгоритмов на вычислительные системы с распределенной памятью: оптимизация тайлинга для одно- и двумерных топологий / С.В. Баханович, П.И. Соболевский // Весцi НАН Беларусi. Сер. фiз.-мат. навук. - 2006. - № 2. - С. 106-112.