АНАЛИЗ УСТОЙЧИВОСТИ МЕТОДОВ НЕЧЕТКОЙ КЛАСТЕРИЗАЦИИ К АНОМАЛЬНЫМ НАБЛЮДЕНИЯМ
Abstract
Исследуется проблема устойчивости решений задачи нечеткой кластеризации по отношению к включению в исследуемую совокупность аномальных наблюдений. Рассматриваются целевые функционалы распространенных оптимизационных методов нечеткой кластеризации FCM, NC, PCM, FRC.
References
1. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms / J.C. Bezdek. - N.Y. : Plenum Press, 1981. - 230 p.
2. Davé, R.N. Robust Clustering Methods: A Unified View / R.N. Davé, R. Krishnapuram // IEEE Transactions on Fuzzy Systems. - 1997. - № 5. - P. 270-293.
3. Dave, R.N. Characterization and detection of noise in clustering / R.N. Dave // Pattern Re¬cognition. - 1991. - Vol. 11, № 12. - P. 657-664.
4. Krishnapuram, R. A possibilistic approach to clustering / R. Krishnapuram, J.M. Keller // IEEE Trans. Fuzzy Systems. - 1993. - № 1. - P. 98-110.
5. Yang, T.-N. Competitive algorithm for the clustering of noisy data / T.-N. Yang, S.-D. Wang // Fuzzy Sets and Systems. - 2004. - № 141. - P. 281-299.
6. Leski, J. Robust Possibilistic Clustering / J. Leski // Archives of control sciences. - 2000. - № 10. - P. 141-155.
7. Rehm, F. A novel approach to noise clustering for outlier detection / F. Rehm, F. Klawonn, R. Kruse // Soft Comput. - 2007. - № 11. - P. 489-494.
For citations:
. Informatics. 2009;(4(24)):27-37.
(In Russ.)
Views: 512