Genetic search method for design calculation of dimensional chains
Abstract
The method of genetic search for a solution of problems of design calculation of linear dimensional chains is offered. The method allows to select dimensional tolerances and deviation for achievement of closing link accuracy at complete and incomplete interchangeability with minimization of selection error. Representation of a linear dimensional chain in the form of feedforward neural network without feedback couplings with square function of activation for selection of dimensional tolerances and deviations is the cornerstone of a method. By genetic search the inputs of neural network will be transformed to chromosome genes. The method assumes a solution of a design problem of calculation of dimensional chains in the form of a problem of discrete optimization with restrictions. The offered method is oriented to automation of calculation of dimensional chains in computer-aided engineering systems of design and technological assignment. Comparative analysis of the offered method with traditional calculations shows that it allows to find solutions with minimal error for standard combinations of dimensional tolerances and deviations.
About the Author
V. V. FrolovUkraine
Dr. Sci. (Eng.), Assoc. Prof.
References
1. Palej M. A., Romanov A. B., Braginskij V. A. Dopuski i posadki. Chast' 2. Tolerances and Landing. Part 2. Saint Petersburg, Politehnika, 2001, 608 p. (in Russian).
2. ASKON. Prilozhenie. Razmernye cepi. Rukovodstvo pol'zovatelja [ASCON. Application. Dimensional chains. User's manual] (in Russian). Available at: https://kompas.ru/source/info_materials/usermanuals/rukovodstvo-polzovatelya-razmernye-cepi.pdf (accessed 13.02.2018).
3. Inventor 2016. Spravka: Mehanicheskij kal'kuljator dopuska [Inventor 2016. Help: Mechanical Tolerance Calculator] (in Russian). Available at: http://help.autodesk.com/view/INVNTOR/2016/RUS/?guid=GUIDA447C0F3-17E4-4A49-9D7F-4F6329ACE7B9 (accessed 13.02.2018).
4. CETOL 6 Sigma: osoznannaja celesoobraznost' tochnosti [CETOL 6 sigma: the conscious purpose of precision]. Umnoe proizvodstvo [Smart Production], 2017, no. 40 (in Russian). Available at: http://www.umpro.ru/index.php?page_id=17 &art_id_1=212&group_id_4=68 (accessed 13.02.2018).
5. Abzalov A. R., Ivanova V. N., Habarov A. E. Razmernyj analiz na osnove parametricheskih modelej s ispol'zovaniem jelektronnyh tablic [Dimensional analysis based on parametric models using spreadsheets]. Sovremennye naukoemkie tehnologii [Modern High Technologies], 2016, no. 12 (in Russian). Available at: https://www.top-technologies.ru/pdf/2016/12-1/36467.pdf (accessed 13.02.2018).
6. Dean A. NX 8.5 ot Siemens PLM Software [NX 8.5 from Siemens PLM software]. SAPR i grafika [CAD Systems], 2013, no. 3, pp. 40–44 (in Russian). Available at: http://sapr.ru/article/23687 (accessed 13.02.2018).
7. Ankin, A. V., Kuz'minskij D. L. Razrabotka programmnogo obespechenija dlja rascheta prostranstvennoj razmernoj cepi [Development of software for the calculation of spatial dimensional chain]. Izvestija MGTU [News of Moscow State Technical University], 2011, no. 2 (in Russian). Available at: http://cyberleninka.ru/article/n/razrabotka-programmnogo-obespecheniya-dlya-rascheta-prostranstvennoyrazmernoy-tsepi (accessed 13.02.2018).
8. Ivahnenko A. A. Sintez dopuskov pokazatelej kachestva pri proektirovanii i jekspluatacii produkcii mashinostroenija : dis. … kand. tehn. nauk : 05.02.23 [Synthesis of Tolerances of Quality Indicators in the Design and Operation of Engineering Products: Cand. sci. diss. (Eng.)]. Kursk, 2015, 163 p. (in Russian). Available at: https://swsu.ru/structura/ aup/upiakvk/ods/dissertation-ivahnenko-aa.pdf (accessed 26.07.2018).
9. Bodjanskij, E. V., Rudenko O. G. Iskusstvennye nejronnye seti: arhitektury, obuchenie, primenenija. Artificial Neural Networks: Architecture, Training, Applications. Kharkov, Teleteh, 2004, 369 p. (in Russian).
10. Anuhin, V. I. Dopuski i posadki. Vybor i raschet, ukazanie na chertezhah. Tolerances and Landings. Selection and Calculation, Indication on the Drawings. Saint Petersburg, Saint Petersburg State University, 2001, 219 p. (in Russian).
11. Frolov V. V. Practical aspects of using of parallel computing in genetic algorithm [Practical aspects of using parallel computing in a genetic algorithm]. Doklady BGUIR [Reports of the Belarusian State University of Informatics and Radioelectronics], 2018, no. 5(115), pp. 24–30 (in Russian).
Review
For citations:
Frolov V.V. Genetic search method for design calculation of dimensional chains. Informatics. 2019;16(1):103-114. (In Russ.)