1. Stewart B., Wild C. P. World Cancer Report 2014. Geneva, WHO Press, 2015, 512 p.
2. Lisitsa Y. U., Yatskou M. M., Apanasovich V. V., Apanasovich T. V. Programmnyj paket CellDataMiner dlja analiza ljuminescentnyh izobrazhenij rakovyh kletok [The software package CellDataMiner for data mining of fluorescent images of cancer cells]. Informatics, 2015, no. 4(48), pp. 73-84 (in Russian).
3. Ronneberger O., Baddeley D., Scheipl F., Verveer P. J., Burkhardt H., …, Joffe B. Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Research, 2008, no. 3, pp. 523-562.
4. Ang J. C., Mirzal A., Haron H., Hamed H. N. Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, no. 5, pp. 971-989.
5. Zhang P. W., Chen L., Huang T., Zhang N., Kong X.Y., Cai Y. D. Classifying ten types of major cancers based on reverse phase protein array profiles. PLoS One, 2015, no. 5, pp. 3-7.
6. Sonntag J., Bender C., Soons Z., Heyde S. von der, König R., …, Korf U. Reverse phase protein array based tumor profiling identifies a biomarker signature for risk classification of hormone receptor-positive breast cancer. Translational Proteomics, 2014, no. 2, pp. 52-59.
7. Kaddi C., Wang M. D. Models for predicting stage in head and neck squamous cell carcinoma using proteomic and transcriptomic data. IEEE Journal of Biomedical and Health Informatics, 2017, no. 1, pp. 246-253.
8. Stafford P., Cichacz Z., Woodbury N. W., Johnston S. A. Immunosignature system for diagnosis of cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, no. 30, pp. 3072-3080.
9. Nguyen T., Nahavandi S. Modified AHP for gene selection and cancer classification using type-2 fuzzy logic. IEEE Transactions on Fuzzy Systems, 2016, no. 2, pp. 273-287.
10. Nguyen T., Khosravi A., Creighton D., Nahavandi S. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification. PloS One, 2015, no. 3.
11. Boom J. Van den, Heider D., Martin S. R., Pastore A., Mueller J. W. 3-phosphoadenosine 5-phosphosulfate (paps) synthases, naturally fragile enzymes specifically stabilized by nucleotide binding. Journal of Biological Chemistry, 2012, no. 21, pp. 17645-17655.
12. Heider D., Hauke S., Pyka M., Kessler D. Insights into the classification of small GTPases. Advances and Applications in Bioinformatics and Chemistry, 2010, no. 3, pp. 15-24.
13. Touw W. G., Bayjanov J. R., Overmars L., Backus L., Boekhorst J., Wels M., Hijum van S. A. Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? Briefings in Bioinformatics, 2013, no. 3, pp. 315-326.
14. Dybowski J. N., Riemenschneider M., Hauke S., Pyka M., Verheyen J., Hoffmann D., Heider D. Improved Bevirimat resistance prediction by combination of structural and sequence-based classifiers. BioData Mining, 2011, no. 4, rr. 26-39.
15. Riemenschneider M., Senge R., Neumann U., Hüllermeier E., Heider D. Exploiting HIV-1 protease and reverse transcriptase cross-resistance information for improved drug resistance prediction by means of multi-label classification. BioData Mining, 2016, no. 9, rr. 10-16.
16. Hoek H., Rimm D. L., Williams K. R., Zhao H., Ariyan S., …, Halaban R. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Research, 2004, no. 15, pp. 5270-5282.
17. Chung G. G., Zerkowski M. P., Ghosh S., Camp R. L., Rimm D. L. Quantitative analysis of estrogen receptor heterogeneity in breast cancer. Laboratory Investigation, 2007, no. 7, pp. 662-669.
18. Camp R. L., Chung G. G., Rimm D. L. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nature Medicine, 2002, no. 11, pp. 1323-1327.
19. Szesze M. K., Crisman C. L., Crow L., McMullen S., Major J. M., …, Wasserman L. M. Quantifying estrogen and progesterone receptor expression in breast cancer by digital imaging. Journal of Histochemistry and Cytochemistry, 2005, no. 6, pp. 753-762.
20. Lisitsa Y. U., Yatskou M. M., Apanasovich V. V., Apanasovich T. V., Shitik M. M. Imitacionnaja model' trehkanal'nyh ljuminescentnyh izobrazhenij populjacij rakovyh kletok [Simulation model for three-channel luminescent images of cancer cell populations]. Zhurnal prikladnoj spektroskopii [Journal of Applied Spectroscopy], 2014, no. 6, pp. 907-913 (in Russian).
21. Burger W., Burge M. Principles of Digital Image Processing: Core Algorithms. London, SpringerVerlag, 2009, 332 p.
22. Jähne B. Digital Image Processing. Iss. 5. Berlin, Heidelberg, Springer, 2002, 585 p.
23. Reiss Th. H. Recognizing Planar Objects using Invariant Image Features. Berlin, Springer, 1993, 186 p.
24. Hu M. K. Visual pattern recognition by moment invariants. IEEE Transactions on Information Theory, 1962, no. 8, pp. 179-187.
25. Neumann U. EFS: an ensemble feature selection tool implemented as R-package and web-application. BioData Mining, 2017, no. 10, rr. 21-30.
26. Bauer D. F. Constructing confidence sets using rank statistics. Journal of the American Statistical Association, 1972, no. 67, pp. 687-690.
27. Yu L. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 2004, no. 5, pp. 1205-1224.
28. Suzuki N., Olson D. H., Reilly E. C. Developing landscape habitat models for rare amphibians with small geographic ranges: a case study of Siskiyou Mountains salamanders in the western USA. Journal of Machine Learning Research, 2008, no. 17, pp. 2197-2218.
29. Elith J., Graham C. H., Anderson R. P., Dudík M., Ferrier S., …, Zimmermann N. E. Novel methods improve prediction of species distributions from occurrence data. Journal of Space and Time in Ecology, 2006, no. 29, pp. 129-151.
30. Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 2004, no. 5, pp. 1205-1224.
31. Neumann U., Riemenschneider M., Sowa J.-P., Baars T., Kälsch J., Canbay A., Heider D. Compensation of feature selection biases accompanied with improved predictive performance for binary classification by using a novel ensemble feature selection approach. BioData Mining, 2016, no. 9, pp. 36-50.
32. Breiman L. Random forests. Machine Learning, 2001, no. 5, pp. 5-32. 33. Liu J., Lin Y., Lin M., Wu S., Zhang J. Feature selection based on quality of information. Neurocomputing, 2017, no. 225, pp. 11-22.
33. Montañés E., Fernández J., Díaz I., Combarro E. F., Ranilla J. Measures of rule quality for feature selection in text categorization. Advances in Intelligent Data Analysis V, 2003, no. 225, pp. 589-598.
34. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., …, Duchesnay É. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 2011, no. 12, pp. 2825-2830.