1. Krot, A. M. Chaotic dynamic methods based on decomposition of vector functions in vector-matrix series into state-space / A. M. Krot // Melecon 2000 : Proc. 10th Mediterranean Electrotechnical Conf., Lemesos, Cyprus, 29-31 May 2000. - Lemesos, 2000. - Vol. 2. - P. 643-646.
2. Krot, A. M. The decomposition of vector functions in vector-matrix series into state-space of nonlinear dynamic system / A. M. Krot // EUSIPCO-2000 : Proc. X European Signal Processing Conf., Tampere, Finland, 4-8 Sept. 2000. - Tampere, 2000. - Vol. 3. - P. 2453-2456.
3. Krot, A. M. Matrix decompositions of vector functions and shift operators on the trajectories of a nonlinear dynamical system / A. M. Krot // Nonlinear Phenomena in Complex Systems. - 2001. - Vol. 4, no. 2. - P. 106-115.
4. Krot, A. M. Application of expansion into matrix to analysis of attractors of complex nonlinear dynamical systems / A. M. Krot // DSP-2002 : Proc. 14th IEEE Intern. Conf. on Digital Signal Processing, Santorini, Greece, 1-3 July 2002. - Santorini, 2002. - P. 959-962.
5. Krot, A. M. Minimal attractor embedding estimation based on matrix decomposition for analysis of dynamical systems / A. M. Krot, H. B. Minervina // Nonlinear Phenomena in Complex Systems. - 2002. - Vol. 5, no. 2. - P. 161-172.
6. Крот, А. М. Анализ аттракторов сложных нелинейных динамических систем на основе матричных рядов в пространстве состояний / А. М. Крот // Информатика. - 2004. - № 1(1). - С. 7-16.
7. Крот, А. М. Разработка и исследование моделей сложных динамических систем на основе методов вход-выходных представлений и пространства состояний / А. М. Крот // Информатика. - 2004. - № 4(4). - С. 95-108.
8. Krot, A. M. The development of matrix decomposition theory for nonlinear analysis of chaotic attractors of complex systems and signals / A. M. Krot // DSP-2009 : Proc. 16th IEEE Intern. Conf. on Digital Signal Processing, Thira, Santorini, Greece, 5-7 July 2009. - Santorini, 2009. - P. 5-10.
9. Krot, A. M. Bifurcation analysis of attractors of complex systems based on matrix decomposition theory /
10. A. M. Krot // IEM 2011 : Proc. of IEEE Intern. Conf. on Industrial Engineering and Management, Zhengzhou, China, Aug. 12-14 2011. - Zhengzhou, 2011. - P. 7-13.
11. Krot, A. M. Nonlinear analysis of the Hopfield network dynamical states using matrix decomposition theory / A. M. Krot, R. A. Prakapovich // Chaotic Modeling and Simulation. - 2013. - Vol. 1. - P. 133-146.
12. Крот, А. М. Анализ хаотических режимов функционирования схемы Чжуа с гладкой нелинейностью на основе метода матричной декомпозиции / А. М. Крот, В. А. Сычев // Известия Национальной академии наук Беларуси. Сер. физ.-техн. наук. - 2018. - № 4. - C. 501-512.
13. Matsumoto, T. Chaos in electronic circuits / T. Matsumoto // Proceedings of the lEEE. - 1987. - Vol. 75, no. 3. - P. 1033-1057.
14. Ogorzalek, M. Exploring chaos in Chua's circuit via unstable periodic orbits / M. Ogorzalek, Z. Galias, L. Chua // IEEE Intern. Symp. on Circuits and Systems (ISCAS '93), Chicago, Illinois. - Chicago, 1993. - P. 2608-2611.
15. Zhong, G. Implementation of Chua’s circuit with a cubic nonlinearity / G. Zhong // IEEE Transactions on Circuits and Systems. - 1994. - Vol. 41, no. 12. - P. 934-941.
16. Galias, Z. Rigorous analysis of Chua’s circuit with a smooth nonlinearity / Z. Galias // IEEE Transactions on Circuits and Systems I: Regular Papers. - 2016. - Vol. 63, no. 12. - P. 2304-2312.
17. A fast and simple implementation of Chua's oscillator with "cubic-like" nonlinearity / K. O'Donoghue [et al.] // International Journal of Bifurcation and Chaos. - 2005. - Vol. 15, no. 9. - P. 2959-2971.
18. Srisuchinwong, B. Implementation of Chua's chaotic oscillator using "roughly-cubic-like" nonlinearity / B. Srisuchinwong, W. San-um // 4th Intern. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiangrai, Thailand, 9-12 May 2007. - Chiangrai, 2007. - P. 36-37.
19. Galias, Z. On the existence of chaos in the Chua's circuit with a smooth nonlinearity / Z. Galias // IEEE Intern. Symp. on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22-25 May 2016. - Montreal, 2016. - . 1106-1109.
20. Ландау, Л. Д. К проблеме турбулентности / Л. Д. Ландау // ДАН СССР. - 1944. - Т. 44, № 8. - С. 339-342.
21. Landau, L. D. Fluid Mechanics / L. D. Landau, E. M. Lifschitz. - Oxford : Pergamon, 1959. - Vol. XIII. - 539 р.
22. Ruelle, D. On the nature of turbulence / D. Ruelle, F. Takens // Communications in Mathematical Physics. - 1971. - No. 21. - Р. 167-192.
23. Ruelle, D. Occurrence of strange axiom A attractors near quasi periodic flows on Tm, m ≥ 3 / D. Ruelle, F. Takens, S. Newhouse // Communications in Mathematical Physics. - 1978. - No. 64. - P. 35-40.
24. Bergé, . L'ordre dans le chaos: vers une approche déterministe de la turbulence / P. Bergé, Y. Pomeau, C. Vidal. - Paris : Hermann, 1988. - 353 p.
25. Moon, F. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers / F. Moon. - John Wiley&Son, 2004. - 309 p.
26. Siderskiy, V. Chua’s circuit for experimenters using readily available parts from a hobby electronics store / V. Siderskiy, A. Mohammed, V. Kapila // 122nd ASEE Annual Conf. & Exposition. - Seattle : American Society for Engineering Education, 2015. - P. 26.384.1-26.384.15.
27. Galias, Z. The dangers of rounding errors for simulations and analysis of nonlinear circuits and systems - and how to avoid them / Z. Galias // IEEE Circuits and Systems Magazine. - 2013. - Vol. 13, no. 3. - P. 35-52.