1. Green, L. Comparing operating characteristics of queues in which customers require a random number of servers / L. Green // Management Science. - 1981. - Vol. 27, № 1. - P. 65-74.
2. Меликов, А.З. Телетрафик: модели, методы, оптимизация / А.З. Меликов, А.Л. Пономаренко, В.В. Паладюк. - Киев : ИПК «Политехника», 2007. - 256 с.
3. Zhang, Y. Queueing analysis of OFDM subcarrier allocation in broadband wireless multiservice networks / Y. Zhang, Y. Xiao, H.H. Chen // IEEE Transactions on Wireless Communications. - 2008. - Vol. 7, № 10. - P. 3951-3961.
4. Яшков, С.В. Математические вопросы теории систем обслуживания с разделением
5. процессора / С.В. Яшков. - М. : ВИНИТИ, 1990. - Т. 29. - С. 3-82.
6. Multi-server queueing systems with cooperation of the servers / C.S. Kim [et al.] // Annals of Operations Research. - 2008. - Vol. 162, № 1. - P. 57-68.
7. Lee, M.H. The SM/M/N queueing system with broadcasting service / M.H. Lee, A.N. Dudin,
8. V.I. Klimenok // Mathematical Problems in Engineering. - 2006. - Vol. 2006, Article ID 98171. - 18 p.
9. Multi-server queueing model with broadcasting service / M.H. Lee [et al.] // IEEE Communications Letters. - 2007. - Vol. 11, № 6. - P. 546-548.
10. Dudin, A. Multi-server queueing model MAP/PH/N with broadcasting service in unreliable
11. servers / A. Dudin, B. Sun // Queues: flows, systems, networks. Proceedings of the International Conf. «Mathematical Methods for Analysis and Optimization of Information Telecommunication Networks ». - Minsk, 2009. - P. 45-51.
12. Lee, M.H. Advantages of the broadcasting service discipline in multi-server queueing model MAP/PH/N / M.H. Lee, A.N. Dudin, Sun Bin // Proceedings of the 11th International Workshop on Multimedia Signal Processing and Transmission. - Jeonju, Korea, 2008. - P. 5-12.
13. Chakravarthy, S.R. The batch Markovian arrival process: a review and future work /
14. S.R. Chakravarthy // Advances in Probability Theory and Stochastic Process. - New Jersey : Notable Publications, 2001. - P. 21-49.
15. Lucantoni, D.M. New results on the single server queue with a batch Markovian arrival process / D.M. Lucantoni // Communications in Statatiscits-Stochastic Models. - 1991. - Vol. 7, № 1. - P. 1-46.
16. Neuts, M.F. Matrix-geometric solutions in stochastic models / M.F. Neuts. - Baltimore :
17. The Johns Hopkins University Press, 1981. - 332 p.
18. Klimenok, V.I. The BMAP/PH/N retrial queue with Markovian flow of breakdowns /
19. V.I. Klimenok, D.S. Orlovsky, C.S. Kim // European Journal of Operational Research. - 2008. -
20. Vol. 189, № 3. - P. 1057-1072.