Synthesis of FPGA architectures of block lifting-based filter banks in quaternion algebra (part 2)
Abstract
Nowadays the methodology for designing systems on a chip is based on highly parameterized IP (itellectual property) components which provide a wide range of adjustment of resources, fixed point arithmetic data formats, and system performance for a specific application. The article describes a flexible technology for rapid prototyping of processor architectures for integer, invertible, paraunitary filter banks in quaternion algebra (Int-Q-PUFB) based on the FPGA Q-MUL IP-component as multiplication operator for quaternions on distributed arithmetic on adders. Implementation of Int-Q-PUFB on FPGA Xilinx Zynq 7010, with 8-channel 8x24 Int-Q-PUFB has a perfect reconstruction property of the input data for a fixed point format, small hardware resource utilization and a slight delay in the pipeline compared to the known solutions for CORDIC-processors and distributed arithmetic on the memory.
About the Authors
E. V. RybenkovBelarusian State University of Informatics and Radioelectronics
Belarus
Eugene V. Rybenkov – Assistant Professor, Department of Computer Engineering.
6, P. Brovki Str., 220013, Minsk
N. A. Petrovsky
Belarusian State University of Informatics and Radioelectronics
Belarus
Nick A. Petrovsky – Ph. D. (Engineering), Associate Professor, Department of Computer Engineering.
6, P. Brovki Str., 220013, Minsk
References
1. Rybenkov E. V., Petrovsky N. A. Sintez FPGA-arhitektur bankov fil'trov na osnove blochnoj lestnichnoj faktorizacii v algebre kvaternionov (chast' 1) [Synthesis of FPGA architectures of block lifting-based filter banks in quaternion algebra (part 1).]. Informatika [Informatics], 2018, vol. 15, no. 2, рр. 29–44 (in Russian).
2. Petrovsky N. A., Rybenkov E. V., Petrovsky A. A. Design and implementation of reversible integer quaternionic paraunitary filter banks on adder-based distributed arithmetic. Signal Processing: Algorithms, Architectures, Arrangements, and Applications. Poznan, 2017, рр. 17–22. doi: 10.23919/SPA.2017.8166830
3. Petrovsky N., Stankevich A., Petrovsky A. Low read-only memory distributed arithmetic implementation of quaternion multiplier using split matrix approach. Electronics Letters, 2014, vol. 50, no. 24, рр. 1809–1811. doi: 10.1049/el.2014.1775
4. Petrovsky N. A., Stankevich A. V., Petrovsky A. A. CORDIC-tehnika dlja fiksirovannogo ugla vrashhenija v operacii umnozhenija kvaternionov [CORDIC-techniques for fixed angle of rotation in multiplying operation of quaternions]. Informatika [Informatics], 2015, no. 4(48), рр. 85–108 (in Russian).
5. Chang T. S., Chen C., Jen C. W. New distributed arithmetic algorithm and its application to IDCT. IEE Proceedings – Circuits, Devices and Systems, 1999, vol. 146, no. 4, рр. 159–163. doi: 10.1049/ip-cds:19990537
6. Vaidyanathan P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ, Prentice-Hall, 1993, 911 p.
7. Korn G. A., Korn T. M. Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov [A Handbook of Mathematics for Scientists and Engineers]. Moscow, Nauka Publ., 1974, 832 p. (in Russian).
8. Li B., Gao X. A method for initializing free parameters in lattice structure of linear phase perfect reconstruction filter bank. Signal Processing, 2014, vol. 98, рр. 243–251. doi: 10.1016/j.sigpro.2013.11.016
Review
For citations:
Rybenkov E.V., Petrovsky N.A. Synthesis of FPGA architectures of block lifting-based filter banks in quaternion algebra (part 2). Informatics. 2018;15(3):22-31. (In Russ.)