Preview

Informatics

Advanced search

Calculation of changes in state of Murnaghans elastic-plastic material under conditions of flow with known movement speeds

Abstract

For the generalized elastic-plastic material of Murnaghan, the problem of determining the velocities of the left measure of elastic distortions and the growth parameter of elastic deformation anisotropy at known displacement velocities is considered. The defining equations are formulated in a finite form for the specific potential energy of elastic deformation and the Cauchy stress tensor. Differential defining equations are presented for the stresses potential, stresses and anisotropy parameters. Three possible cases when the point of the deviator section of the yield surface will be regular or singular are considered. A system of equations for determining the velocities of the right-hand measure of elastic distortions and the growth parameter for elastic anisotropy is obtained. Using an orthogonal transformation with proper orthogonal rotation tensor that accompanies an elastic deformation, the system is reduced to a system of equations for determining unknown parameters. With the help of the symbolic calculation tools of the MathCAD 8 system, the necessary analytical representations of the values for the developed program complex in the FORTRAN language are found. The procedure for minimizing the growth parameter of elastic deformation anisotropy is described. A software implementation of the solution of this problem is obtained, which is an essential element of the numerical simulation system for the material under consideration.

About the Author

O. L. Shved
The United Institute of Informatics Problems, National Academy of Sciences of Belarus
Russian Federation

Oleg L. Shved - Cand. Sci. (Eng.), Associate Professor, Leading Researcher.

6, Surganova Str., 220012, Minsk



References

1. Lurie A. I. Nelinejnaja teorija uprugosti. Nonlinear Theory Elasticity. Moscow, Nauka, 1980, 512 p. (in Russian).

2. Murnaghan F. D. Finite Deformation of an Elastic Solid. New York, Dover, 1951, 140 p.

3. Shved O. L. Uprugoplasticheskij material Murnagana [Murnaghan's elastic-plastic material]. Materialy X Vserossijskoj konferencii po mehanike deformiruemogo tverdogo tela [Proceedings of X All-Russian Conference on Solid Mechanics, 18-22September 2017, Samara, Russia]. Samara, 2017, vol. 2, рp. 283-286 (in Russian).

4. Naghdi P. M. A critical review of the state of finite plasticity. Zeitschrift fur Angewandte Mathematik und Physic, 1990, vol. 41, no. 3, рр. 315-394.

5. Zhilin P. A. Osnovnye uravnenija teorii neuprugih sred [Basic equations theory of inelastic media]. Trudy XXVHI letnej shkoly «Aktual'nye problemy mehaniki» [Proceedings of the XXVIII Summer School. Actual Problems of Mechanics], Saint Petersburg, 2001, рр. 14-58 (in Russian).

6. Bell J. F. Jeksperimental'nye osnovy mehaniki deformiruemyh tverdyh tel. Chast 2. Konechnye deformacii. Experimental Foundations of Mechanics of Deformable Solids. Part 2. Finite deformations. Moscow, Nauka, 1984, 432 р. (in Russian).

7. Shved O. L. Matematicheskoe modelirovanie processa prjamogo vydavlivanija svinca [Mathematical modeling of the process of direct extrusion of lead]. Informatika [Informatics], 2007, no. 4(16), рр. 133-136 (in Russian).

8. Pozdeev A. A. Bol'shie uprugoplasticheskie deformacii: teorija, algoritmy, prilozhenija. Large Elastic-Plastic Deformations: Theory, Algorithms, Applications. Moscow, Nauka, 1986, 232 p. (in Russian).

9. Shved O. L. Chislennoe modelirovanie jeffekta uvelichenija plastichnosti metalla pri rastjazhenii pod dejstviem vysokogo gidrostaticheskogo davlenija [Numerical simulation of the effect of increasing the ductility of a metal under tension due to high hydrostatic pressure]. Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya fizika-technichnych navuk [Proceedings of the National Academy of Sciences of Belarus. Physical-technical series], 2014, no. 4, рр. 18-23 (in Russian).

10. Shved O. L. Kriterij razrushenija v modeli monoklinnogo uprugoplasticheskogo materiala [Criterion of failure in the model of a monoclinic elastic-plastic material]. Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya fizika-technichnych navuk [Proceedings of the National Academy of Sciences of Belarus. Physical-technical series], 2015, no. 4, рр. 46-53 (in Russian).

11. Shved O. L. K voprosu opisanija javlenija "zapiranija" oblasti vysokogo davlenija [On the question of describing the phenomenon of "blocking" high pressure area]. Sbornik trudov IX Vserossijskoj konferencii po mehanike deformiruemogo tverdogo tela [Proceedings of the IX All-Russian Conference on Solid Mechanics, 12-15 September 2016, Voronezh]. Voronezh, 2016, рp. 202-205 (in Russian).

12. Shved O. L. Vybor parametrov opredeljajushhih uravnenij pri techenii nelinejno uprugoplasticheskogo materiala [The choice of the parameters of the determining equations for the flow of a nonlinearly elastic-plastic material]. Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya fizika-technichnych navuk [Proceedings of the National Academy of Sciences of Belarus. Physical-technical series], 2017, no. 3, рp. 47-55 (in Russian).

13. Shved O. L. Uchet uprugoj anizotropii triklinnogo uprugoplasticheskogo materiala [Allowance for elastic anisotropy of triclinic elastic-plastic material]. Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Physics and Matematics series], 2017, no. 1, рp. 89-97 (in Russian).


Review

For citations:


Shved O.L. Calculation of changes in state of Murnaghans elastic-plastic material under conditions of flow with known movement speeds. Informatics. 2018;15(4):59-70. (In Russ.)

Views: 601


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)