АЛГОРИТМ ПРЕДСКАЗАНИЯ ВЗАИМОДЕЙСТВИЯ БЕЛКОВ НА ОСНОВЕ СТРУКТУРНОЙ ГОМОЛОГИИ
Abstract
Предлагается оригинальный алгоритм предсказания взаимодействия белков, основанный на
структурной схожести с экспериментально определенным интерфейсом белкового комплекса, отобранным из базы интерфейсов белковых комплексов. Пара свободных белков выравнивается на интерфейс из библиотеки белок-белковых интерфейсов. Выравнивание выполняется с помощью метода динамического программирования путем максимизации корреляции между матрицами расстояний отрезков интерфейса и белка.
About the Authors
Т. КирисBelarus
А. Тузиков
Belarus
References
1. Tramontano, A. The Ten Most Wanted Solutions in Protein Bioinformatics /
2. A. Tramontano. – Boca Raton : Chapman and Hall/CRC, 2005. – 216 p.
3. Lensink, M.F. Docking and scoring protein interactions: CAPRI 2009 / M.F. Lensink,
4. S.J. Wodak // Proteins. – 2010. – Vol. 78, № 15. – P. 3073-3084.
5. The performance of ZDOCK and ZRANK in rounds 6–11 of CAPRI / K. Wiehe [et al.] //
6. Proteins. – 2007. – Vol. 69. – P. 719–725.
7. Schneidman-Duhovny, D. Automatic prediction of protein interactions with large scale motion / D. Schneidman-Duhovny, R. Nussinov, H. Wolfson // Proteins. – 2007. – Vol. 69. – P. 764–773.
8. PIPER: an FFT-based protein docking program with pairwise potentials / D. Kovakov
9. [et al.] // Proteins. – 2006. – Vol. 65. – P. 392–406.
10. Kowalsman, N. Inherent limitations in protein-protein docking procedures / N. Kowalsman, M. Eisenstein // Bioinformatics. – 2007. – Vol. 23. – P. 421–426.
11. Lu, L. MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions
12. by multimeric threading / L. Lu, H. Lu, J. Skolnick // Proteins. – 2002. – Vol. 49. – P. 350–364.
13. Kundrotas, P.J. Predicting 3d structures of transient protein_protein complexes by homology / P.J. Kundrotas, E. Alexov // Biochimica et Biophysica Acta. – 2006. – Vol. 1764. – P. 1498–1511.
14. Fast and accurate modeling of protein-protein interactions by combining template-interfacebased docking with flexible refinement / N. Tuncbag [et al.] // Proteins. – 2012. – Vol. 80. – P. 1239 – 1249.
15. A structural perspective on protein-protein interactions / R. Russel [et al.] // Curr Opin
16. Struct Biol. – 2004. – Vol. 14. – P. 313–324.
17. Sinha, R. Docking by structural similarity at protein-protein interfaces / R. Sinha,
18. P. Kundrotas, I. Vakser // Proteins. – 2010. – Vol. 78. – P. 3235–3241.
19. Vreven, T. Integrating atom-based and residue-based scoring functions for protein-protein docking / T. Vreven, H. Hwang, Z. Weng // Protein Science. – 2011. – Vol. 20. – P. 1576–1586.
20. Protein-protein docking with simultaneous optimization of rigid-body displacement and
21. side-chain conformations / J.J. Gray [et al.] // J. Mol. Biol. – 2003. – Vol. 331, № 1. – P. 281–299.
22. FireDock: a web server for fast interaction re-nement in molecular docking / E. Maschiach
23. [et al.] // Nucleic Acids Res. – 2008. – Vol. 36. – P. W229–W232.
24. Fernandez-Recio, J. ICM-DISCO docking by global energy minimization with fully flexible
25. side-chains / J. Fernandez-Recio, M. Totrov, R. Abagyan // Proteins. – 2003. – Vol. 52. – P. 113–117.
26. Dominguez, C. HADDOCK: a protein-protein docking approach based on biochemical
27. and/or biophysical information / C. Dominguez, R. Boelens, A. Bonvin // J. Am. Chem. Soc. – 2003. – Vol. 125. – P. 1731–1737.
28. Kozakov, D. Discrimination of near-native structures in protein-protein docking by testing the stability of local minima / D. Kozakov, O. Schueler-Furman, S. Vajda // Proteins. – 2008. – Vol. 72. – P. 993–1004.
29. Pierce, B. A combination of rescoring and refinement significantly improves protein
30. docking performance / B. Pierce, Z. Weng // Proteins. – 2008. – Vol. 72. – P. 270–279.
31. Lorenzen, S. Monte Carlo refinement of rigid-body protein docking structures with backbone displacement and side-chain optimization / S. Lorenzen, Y. Zhang // Proteins. – 2007. – Vol. 16. – P. 2716–2725.
32. Cavasotto, C. Representing receptor flexibility in ligand docking through relevant normal modes / C. Cavasotto, J. Kovacs, R. Abagyan // J. Am. Chem. Soc. – 2005.– Vol. 127. – P. 9632–9640.
33. Fiorucci, S. Binding site prediction and improved scoring during flexible protein-protein
34. docking with ATTRACT / S. Fiorucci, M. Zacharias // Proteins. – 2010. – Vol. 78. – P. 3131–3139.
35. Kastritis, P. Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark / P. Kastritis, A. Bonvin // J. Proteome Res. – 2010. – Vol. 9. – P. 2216–2225.
36. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes / C. Zhang [et al.] // J. Med. Chem. – 2005. – Vol. 48. – P. 2325–2335.
37. Scoring by intermolecular pairwise propensities of exposed residues (SIPPER): A new efficient potential for protein-protein docking / C. Pons [et al.] // J. Chem. Inf. Model. – 2011. – Vol. 51. – P. 370–377.
38. Shen, M. Statistical potential for assessment and prediction of protein structures / M. Shen, A. Sali // Protein Science. – 2006. – Vol. 15. – P. 2507–2524.
39. Liu, S. DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking / S. Liu, I. Vakser // BMC Bioinformatics. – 2011. – Vol. 12. – P. 280–286.
40. Pierce, B. ZRANK: Reranking protein docking predictions with an optimized energy function / B. Pierce, Z. Weng // PROTEINS: Structure, Function, and Bioinformatics. – 2007. – Vol. 67. – P. 1078–1086.
41. Betts, M. An analysis of conformational changes on protein-protein association: implications for predictive docking / M. Betts, M. Sternberg // Protein Eng. – 1999. – Vol. 12. – P. 271–289.
42. Zacharias, M. Accounting for conformational changes during protein-protein docking /
43. M. Zacharias // Curr Opin Struct Biol. – 2010. – Vol. 20, № 2. – P. 180–186.
44. Ding, F. Rapid flexible docking using a stochastic rotamer library of ligands / F. Ding,
45. S. Yin, N.V. Dokholyan // J. Chem. Inf. Model. – 2010. – Vol. 50, № 9. – P. 1623–1632.
46. Principles of flexible protein-protein docking / N. Andrusier [et al.] // Proteins. – 2008. –
47. Vol. 73, № 2. – P. 271–289.
48. Zhang, Y. Scoring function for automated assessment of protein structure template quality / Y. Zhang, J. Skolnick // Proteins. – 2004. – Vol. 57. – P. 702–710.
49. Dockground system of databases for protein recognition studies: Unbound structures for docking / Y. Gao [et al.] // Proteins. – 2007. – Vol. 69, № 4. – P. 845–851.
50. Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures /
51. R. Menndez [et al.] // Proteins. – 2005. – Vol. 60. – P. 150–169.
52. Kolodny, R. Approximate protein structural alignment in polynomial time / R. Kolodny,
53. N. Linial // PNAS. – 2004. – Vol. 101. – P. 12201–12206.
54. Kabsch, W.A. A solution for the best rotation to relate two sets of vectors / W.A. Kabsch // Acta Cryst. – 1976. – Vol. 32. – P. 922–923.
55. Horn, R. Matrix Analysis / R. Horn, C. Johnson. – Cambridge University Press, 1985.
56. Protein-protein docking benchmark 2.0: an update / J. Mintseris [et al.] // Proteins. – 2005. – Vol. 60. – P. 214–216.
Review
For citations:
, . Informatics. 2012;(4(36)):36-44. (In Russ.)