Singular wavelets on a finite interval
Abstract
Nonparametric methods are used in complex cases where model information is insufficient. A new method of nonparametric approximation, the singular wavelet method, is developed. The method includes a numerical algorithm based on the summation of a recurrent sequence of functions. The introduction explains the idea of the singular wavelet method to combine the theory of wavelets with kernel regression estimation of the Nadaraya - Watson type. This integration is realized by regularizing the wavelet transform. Usually kernel estimation is are considered as an example of nonparametric estimation. However, one parameter - the blur parameter - is still present in the traditional kernel regression algorithm. In the approximation by the method of singular value wavelet, the summation of kernel estimation of the type Nadaraya - Watson using the blur parameter takes place. In the main part of the work, the variant of wavelet transform regularization for the finite interval is considered. Theorems that formulate the properties of a wavelet transform with a singular wavelet are proved, an algorithm for approximating a function defined on a finite interval by a sequence of wavelet transforms is proposed.
About the Author
V. M. RomanchakBelarus
Vasily M. Romanchak - Associate Professor "Engineering Mathematics".
65, Nezavisimosti Avе., 220013, Minsk
References
1. Hardle W. Prikladnaja neparametricheskaja regressija. Applied Nonparametric Regression. Moscow, Mir Publ., 1993, 349 p.
2. Parzen E. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 1962, vol. 33, no. 3, рр. 1065—1076.
3. Watson G. S. Smooth regression analysis. Sankhya, The Indian Journal of Statistics. Ser. A., 1964, vol. 26, pp. 359-372.
4. Nadaraya E. A. Ob ocenke regressii [About a regression assessment]. Teorija verojatnostej i ee primenenie [Probability Theory and Its Application], 1964, vol. 9, no. 1, pp. 157-159 (in Russian).
5. Devroye L., D'erfi L. Neparametricheskoe ocenivanie plotnosti. L1 podhod. Nonparametric Density Estimation. The L1 View. Мoscow, Mir Publ., 1988, 407 p.
6. Chui K. Vvedenie v vejvlety. Introduction in Wavelet. Moscow, Mir Publ., 2001, 412 p.
7. Daubechies I. Desjat' lekcij po vejvletam. Ten Lectures on Wavelets. Izhevsk, NIC "Reguljarnaja i haoticheskaja dinamika", 2001, 464 p.
8. Frazier M. Vvedenie v vjejvlety v svete linejnoj algebry. An Introduction to Wavelet Through Linear Algebra. Moscow, BINOM, Laboratorija znanij Publ., 2008, 487 p.
9. Serenkov P. S., Ramanchak V. M., Solomakho V. L. Sistema sbora dannyh o kachestve kak tehnicheskaja osnova funkcionirovanija jeffektivnyh sistem menedzhmenta kachestva [System of collection of data on quality as technical basis of functioning of effective systems of quality management]. Doklady Nacional'noj akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2006, vol. 50, no. 4, pp. 100—104 (in Russian).
10. Ramanchak V. M., Lappo P. M. Approksimacija jekspertnyh ocenok singuljarnymi vejvletami [Approximation of expert estimates by singular wavelets]. Vestnik Grodnenskogo gosudarstvennogo universiteta Ser. 2. Matematika. Fizika. Informatika, vychislitel'naja tehnika i upravlenie [Bulletin of the Grodno State University. Ser. 2. Mathematics. Physics. Informatics, Computer Science and Management], 2017, vol. 7, no. 1, pp. 132-139 (in Russian).
Review
For citations:
Romanchak V.M. Singular wavelets on a finite interval. Informatics. 2018;15(4):39-49. (In Russ.)