СТАЦИОНАРНОЕ РАСПРЕДЕЛЕНИЕ ТАНДЕМНОЙ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ДОПОЛНИТЕЛЬНЫМИ ПОТОКАМИ НА СТАНЦИЯХ
Аннотация
Об авторе
В. И. КлименокБеларусь
Минск, пр. Независимости, 4
Список литературы
1. Balsamo, S. A review on queueing network models with finite capacity queues for software architectures performance prediction / S. Balsamo, V.D.N. Persone, P. Inverardi // Performance Evaluation. – 2003. – Vol. 51. – P. 269–288.
2. Gnedenko, B.W. Handbuch der Bedienungstheorie / B.W. Gnedenko, D. Konig. – Berlin: Akademie Verlag, 1983.
3. Perros, H.G. A bibliography of papers on queueing networks with finite capacity queues / H.G. Perros // Performance Evaluation. – 1989. – Vol. 10. – P. 255–260.
4. Heyman, D.P. Modelling multiple IP traffic streams with rate limits / D.P. Heyman, D. Lucantoni // IEEE/ACM Transactions on Networking. – 2003. – Vol. 11. – P. 948–958.
5. Klemm, A. Modelling IP traffic using the batch Markovian arrival process / A. Klemm, C. Lindermann, M. Lohmann // Performance Evaluation. – 2003. – Vol. 54. – P. 149–173.
6. Bromberg, M.A. Multi-phase systems with losses with exponential servicing / M.A. Bromberg // Automation and Remote Control. – 1979. – Vol. 40. – P. 27–31.
7. Bromberg, M.A. Service by a cascaded network of instruments / M.A. Bromberg, V.A. Kokotushkin, V.A. Naumov // Automation and Remote Control. – 1977. – Vol. 38. – P. 60–64.
8. Lucantoni, D.M. New results on the single server queue with a batch Markovian arrival process / D.M. Lucantoni // Communications in Statistics-Stochastic Models. – 1991. – Vol. 7. – P. 1–46.
9. Graham, A. Kronecker Products and Matrix Calculus with Applications / A. Graham. – Cichester : Ellis Horwood, 1981.
10. Klimenok, V.I. Calculation of characteristics of a multiserver queue with rejections and burst-like traffic / V.I. Klimenok // Automatic Control and Computer Sciences. – 1999. – Vol. 33, no. 6. – P. 35–43.
11. Lack of invariant property of Erlang loss model in case of the MAP input / V. Klimenok [et al.] // Queueing Systems. – 2005. – Vol. 49. – P. 187–213.
12. Kemeni, J.G. Denumerable Markov Chains / J.G. Kemeni, J.L. Snell, A.W. Knapp. – N. Y.: Van Nostrand, 1966.
13. Skorokhod, A. Probability theory and random processes / A. Skorokhod. – Kiev: High School, 1980.
14. Alfa, A.S. On approximating higher order MAPs with MAPs of order two / A.S. Alfa, J.E. Diamond // Queueing Systems. – 2000. – Vol. 34. – P. 269
15. Heindl, A. Correlation bounds for second order MAPs with application to queueing network decomposition / A. Heindl, K. Mitchell, A. van de Liefvoort // Performance Evaluation. – 2006. – Vol. 63. – P. 553–577.
16. Heindl, A. Output models of ????????????/????????/1(/????) queues for an efficient network decomposition / A. Heindl, M. Telek // Performance Evaluation. – 2002. – Vol. 49. – P. 321–339.
Рецензия
Для цитирования:
Клименок В.И. СТАЦИОНАРНОЕ РАСПРЕДЕЛЕНИЕ ТАНДЕМНОЙ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ДОПОЛНИТЕЛЬНЫМИ ПОТОКАМИ НА СТАНЦИЯХ. Информатика. 2017;(3(55)):13-22.
For citation:
Klimenok V.I. STATIONARY DISTRIBUTION OF A TANDEM QUEUE WITH ADDITIONAL FLOWS ON THE STATIONS OF THE TANDEM. Informatics. 2017;(3(55)):13-22. (In Russ.)