VARIETIES OF APERIODIC DYNAMICS IN THE EVENT-DRIVEN POPULATION MODELS
Abstract
About the Author
A. Y. PerevaryukhaRussian Federation
References
1. Вул, Е.Б. Универсальность Фейгенбаума и термодинамический формализм / Е.Б. Вул, Я.Г. Синай, К.М. Ханин // Успехи математических наук. – 1984. – Т. 39, вып. 3. – С. 3–37.
2. Фейгенбаум, М. Универсальность в поведении нелинейных систем / М. Фейгенбаум // Успехи физических наук. – 1983. – Т. 141, вып. 2. – С. 343–374.
3. Переварюха, А.Ю. Интерпретация поведения моделей динамики биоресурсов и момен-тальная хаотизация в новой модели / А.Ю. Переварюха // Нелинейный мир. – 2012. – № 4. – С. 255–261.
4. Singer, D. Stable orbits and bifurcations of the maps on the interval / D. Singer // SIAM jour-nal of applied math. – 1978. – Vol. 35. – P. 260–268.
5. Vellekoop, М. On intervals, transitivity = chaos / М. Vellekoop, R. Berglund // The Ameri-can Mathematical Monthly. – 1994. – Vol. 101, № 4. – P. 353–355.
6. Allee, W.C. Studies in animal aggregations: mass protection against colloidal silver among goldfishes / W.C. Allee, E Bowen // Journal of Experimental Zoology. – 1932. – № 2. – P. 185–207.
7. Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey / E. Gonzalez-Olivares [et al.] // Appl. Math. Modell. – 2011. – Vol. 35. – P. 366–381.
8. Yongli, C. Spatiotemporal complexity of a Leslie–Gower predator-prey model with the weak Allee effect / C. Yongli, Zh. Caidi, W. Weiming // Journal of Applied Mathematics. – 2013. – Vol. 2013, Article ID 535746.
9. Ricker, W. Stock and recruitment / W. Ricker // Journal Fisheries research board of Canada. – 1954. – Vol. 11, № 5. – P. 559–623.
10. Paar, V. Sensitive dependence of lifetimes of chaotic transient on numerical accuracy for a model with dry friction and frequency dependent driving amplitude / V. Paar, N. Pavin // Modern Physics Letters B. – 1996. – Vol. 10, № 4 & 5. – P. 153–159.
11. Grebogi, C. Chaotic attractors in crisis / C. Grebogi, E. Ott, J.A. Yorke // Physical Review Letters. – 1982. – Vol. 48, № 22. – P. 1507–1510.
12. Grebogi, C. Chaos, strange attractors and fractal basin boundaries in nonlinear dynamics / C. Grebogi, E. Ott, J.A. Yorke // Science. – 1987. – Vol. 238, № 4827. – P. 632–638.
13. Minto, C. Blanchard Survival variability and population density in fish populations / C. Minto, R.A. Myers // Nature. – 2008. – Vol. 452. – P. 344–348.
14. Еремеева, Е.Ф. Теория этапности развития и её значение в рыбоводстве / Е.Ф. Ереме-ева, А.И. Смирнов // Теоретические основы рыбоводства. – М. : Наука, 1965. – С. 129–138.
Review
For citations:
Perevaryukha A.Y. VARIETIES OF APERIODIC DYNAMICS IN THE EVENT-DRIVEN POPULATION MODELS. Informatics. 2014;(2):58-65. (In Russ.)